NOTICE
This document is a Roads and Maritime Services D&C Specification. It has been developed for use with Design & Construct roadworks and bridgeworks contracts let by Roads and Maritime Services. It is not suitable for any other purpose and must not be used for any other purpose or in any other context.
Copyright in this document belongs to Roads and Maritime Services.

REVISION REGISTER

<table>
<thead>
<tr>
<th>Ed/Rev Number</th>
<th>Clause Number</th>
<th>Description of Revision</th>
<th>Authorised By</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 1/Rev 0</td>
<td></td>
<td>First issue.</td>
<td>GM, IC W Stalder</td>
<td>28.06.11</td>
</tr>
<tr>
<td>Ed 2/Rev 0</td>
<td></td>
<td>Updated to accord with base (non-D&C) Specification B283 Ed 5 Rev 0.</td>
<td>MCQ</td>
<td>25.07.18</td>
</tr>
<tr>
<td>Ed 2/Rev 1</td>
<td></td>
<td>Updated to accord with base (non-D&C) Specification B283 Ed 5 Rev 1.</td>
<td>MCQ</td>
<td>05.10.18</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>CLAUSE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>II</td>
</tr>
<tr>
<td>RMS Copyright and Use of this Document</td>
<td>ii</td>
</tr>
<tr>
<td>Base Specification</td>
<td>ii</td>
</tr>
<tr>
<td>1 GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Structure of the Specification</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Definitions</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Quality Management System</td>
<td>2</td>
</tr>
<tr>
<td>1.5 Approved Bridge Components and Systems</td>
<td>3</td>
</tr>
<tr>
<td>2 DESIGN</td>
<td>3</td>
</tr>
<tr>
<td>2.1 General</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Design Calculations and Certifications</td>
<td>4</td>
</tr>
<tr>
<td>3 MATERIALS</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Ferrous Materials</td>
<td>4</td>
</tr>
<tr>
<td>3.2 Sliding Pads and Strips</td>
<td>5</td>
</tr>
<tr>
<td>3.3 Elastomeric Disc</td>
<td>5</td>
</tr>
<tr>
<td>3.4 Internal Seals</td>
<td>5</td>
</tr>
<tr>
<td>3.5 Lubricant</td>
<td>5</td>
</tr>
<tr>
<td>3.6 Material Conformity</td>
<td>6</td>
</tr>
<tr>
<td>4 FABRICATION</td>
<td>6</td>
</tr>
<tr>
<td>4.1 General</td>
<td>6</td>
</tr>
<tr>
<td>4.2 Flatness of Surfaces</td>
<td>7</td>
</tr>
<tr>
<td>4.3 Pot and Piston</td>
<td>7</td>
</tr>
<tr>
<td>4.4 Elastomeric Disc</td>
<td>8</td>
</tr>
<tr>
<td>4.5 Internal Seal</td>
<td>8</td>
</tr>
<tr>
<td>4.6 Stainless Steel Sliding Surface</td>
<td>8</td>
</tr>
<tr>
<td>4.7 Guide Bars</td>
<td>9</td>
</tr>
<tr>
<td>4.8 PTFE Sliding Pad and Strips</td>
<td>9</td>
</tr>
<tr>
<td>4.9 Attachment Plates</td>
<td>10</td>
</tr>
<tr>
<td>5 PROTECTIVE TREATMENT</td>
<td>10</td>
</tr>
<tr>
<td>5.1 General</td>
<td>10</td>
</tr>
<tr>
<td>5.2 Insulation</td>
<td>10</td>
</tr>
<tr>
<td>6 TESTING OF BEARINGS</td>
<td>10</td>
</tr>
<tr>
<td>6.1 General</td>
<td>10</td>
</tr>
<tr>
<td>6.2 Geometrical Verification</td>
<td>11</td>
</tr>
<tr>
<td>6.3 Load Tests</td>
<td>11</td>
</tr>
<tr>
<td>6.4 Criteria for Acceptance</td>
<td>12</td>
</tr>
<tr>
<td>6.5 Bearing Report</td>
<td>13</td>
</tr>
<tr>
<td>7 IDENTIFICATION AND DELIVERY</td>
<td>13</td>
</tr>
<tr>
<td>7.1 Identification</td>
<td>13</td>
</tr>
<tr>
<td>7.2 Delivery</td>
<td>13</td>
</tr>
<tr>
<td>ANNEXURES B283/A AND B283/B – (NOT USED)</td>
<td>15</td>
</tr>
</tbody>
</table>
FOREWORD

RMS COPYRIGHT AND USE OF THIS DOCUMENT

Copyright in this document belongs to Roads and Maritime Services.

When this document forms part of a deed

This document should be read with all the documents forming the Project Deed.

When this document does not form part of a contract

This copy is not a controlled document. Observe the Notice that appears on the first page of the copy controlled by RMS. A full copy of the latest version of the document is available on the RMS Internet website: http://www.rms.nsw.gov.au/business-industry/partners-suppliers/specifications/index.html

BASE SPECIFICATION

This document is based on Specification RMS B283 Edition 5 Revision 1.
1 GENERAL

1.1 SCOPE

This Specification sets out the requirements for the supply of stainless steel pot bearings and associated attachment plates, including their design and fabrication.

For requirements on installation of bearings, refer to Specification RMS D&C B284.

1.2 STRUCTURE OF THE SPECIFICATION

This Specification includes a series of annexures that detail additional requirements.

1.2.1 (Not Used)

1.2.2 (Not Used)

1.2.3 Schedules of HOLD POINTS and Identified Records

The schedules in Annexure B283/C list the HOLD POINTS that must be observed. Refer to Specification RMS D&C Q6 for the definition of HOLD POINTS.

The records listed in Annexure B283/C are Identified Records for the purposes of RMS D&C Q6 Annexure Q/E.

1.2.4 Planning Documents

The PROJECT QUALITY PLAN must include each of the documents and requirements listed in Annexure B283/D and must be implemented.

1.2.5 Frequency of Testing

The Inspection and Test Plan must nominate the proposed frequency of testing to verify conformity of the item, which must not be less than the frequency specified in Annexure B283/L. Where a minimum frequency is not specified, nominate an appropriate frequency. Frequency of testing must conform to the requirements of RMS D&C Q6.

You may propose to the RMS Representative a reduced minimum frequency of testing. The proposal must be supported by a statistical analysis verifying consistent process capability and product characteristics. The RMS Representative may vary or restore the specified minimum frequency of testing, either provisionally or permanently, at any time.

1.2.6 Referenced Documents

Standards, specifications and test methods are referred to in abbreviated form (e.g. AS 1234). For convenience, the full titles are given in Annexure B283/M.
1.3 DEFINITIONS

The terms “you” and “your” mean “the Contractor” and “the Contractor’s” respectively.

The following definitions apply to this Specification:

Bearing internal surfaces: The internal surfaces of the pot, the face of the piston in contact with the elastomeric disc, the rim of the piston and the areas covered by the stainless steel plates and the sliding pads and strips.

Bearing group: Bearings of the same type, with the same pot and piston geometry and with similar load capacity, for the purpose of testing. Bearings within a group may have different translational movement ranges.

Bearing type: Fixed, free sliding or guided sliding bearing.

Elastomer: A macromolecular material that rapidly regains its approximate original dimensions after release of a weak stress that has caused its substantial deformation.

Elastomeric disc: A disc of rubber fitted with internal seals around its perimeter that allows relative rotation of the top and bottom parts of the bearing.

External seal: The component used to seal the gap between the piston and the pot.

Internal seal: The sealing ring(s) recessed into the face of the elastomeric disc and being in contact with the piston that prevents the disc from extruding from the pot.

Nominal dimension: The distance between any two points.

Pot bearing: A high-load multi-rotational bearing comprising a steel pot and a close fitting steel piston separated by an elastomeric disc, together with a sliding plate where applicable.

Sliding plate: A steel plate in a sliding bearing fitted with a sliding surface to allow relative movement between the plate and the bearing.

Structural Engineer: A Professional Engineer who is a Chartered Member of Engineers Australia (or equivalent) practising in the field of structural engineering. An equivalent to membership of Engineers Australia would be an Engineer registered on the National Engineering Register (NER) in the general area of practice of Structural Engineering.

Surface roughness parameter (R_a): Measurement of roughness of a surface as specified in ISO 3274.

1.4 QUALITY MANAGEMENT SYSTEM

The manufacturer/supplier of the bearings under this Specification must have in place quality management systems independently certified as fully complying with AS/NZS ISO 9001, by an organisation accredited by JAS-ANZ or an affiliated international certification organisation. Provide evidence of the certification.

The RMS Representative may conduct audits and inspections of the suppliers’ procedures and processes during the course of the Contract.
1.5 **APPROVED BRIDGE COMPONENTS AND SYSTEMS**

Unless otherwise approved by the RMS Representative, use only pot bearing types that have been approved by RMS. The list of RMS approved bridge proprietary products can be found at: http://www.rms.nsw.gov.au/business-industry/partners-suppliers/documents/tenders-contracts/listofapprovedbridgecomponentssystems.pdf

2 **DESIGN**

2.1 **GENERAL**

2.1.1 **Codes and Standards**

Design bearings to comply with the requirements of AS 5100.4, EN 1337 and RMS Bridge Technical Directions, unless otherwise specified. The requirements of AS 5100.4 take precedence over those of EN 1337 where a conflict arises between the two.

Design bolts to AS 5100.6.

Design steel components to AS 5100.6 or another bearing design standard approved by the RMS Representative. Regardless of the standard used, the relevant capacity reduction factors in AS 5100.6 must apply.

2.1.2 **Design Loads and Movements**

Design pot bearings for Ultimate Limit State (ULS) effects. For rehabilitation work where the ULS loads have not been specified, obtain the relevant design loads by multiplying the relevant Serviceability Limit State (SLS) loads by 1.5.

Design and dimension all associated sliding surfaces to accommodate the ULS movements plus an additional movement of ± 25 mm.

Design the guide bars to withstand the lateral forces shown on the Design Documentation drawings and dimension them such that the bearing movement remain guided throughout the specified limits of translation and rotation.

2.1.3 **Other Requirements**

Allow for construction tolerances in the design and fabrication of the bearings and attachment plates, where required for the construction method adopted.

Design the bearings such that the fasteners connecting the bearings to the attachment plates can be replaced without lifting the bridge superstructure.

Design the bearings to allow their removal at a maximum jacking lift of 10 mm unless specified otherwise on the Design Documentation drawings.

The bearing attachment plates and anchor bolts must not obstruct the movement and rotation of the bearing and must allow its removal and replacement.

Provide for mechanical lifting and handling of the bearings where required.
2.2 DESIGN CALCULATIONS AND CERTIFICATIONS

Submit the followings for each bearing group:

(a) Confirmation of all load cases (axial and shear loads, and rotation and movement in each direction, as applicable).

(b) Drawings of the assembled bearing and attachment plates to scale with overall dimensions, including pot and piston dimensions.

(c) Design calculations of the bearing including elastomer pressure, elastomer thickness, PTFE mean and peak pressures, maximum bearing stress on substructure and superstructure giving method of calculation, forces on bolts and dowels with required sizes and grades, and stress checks on pot and piston components.

(d) Verification of the external seal closing the gap between piston and cylinder, accounting for all rotations calculated.

(e) Any variations from the details of the bridge proprietary bearing as approved by RMS (refer to Clause 1.5).

(f) A certificate from a Structural Engineer (refer Clause 1.3 for definition of “Structural Engineer”) experienced in the structural design of bearings verifying that all bearings and attachments comply with the requirements of the Design Documentation drawings and this Specification.

3 MATERIALS

3.1 FERROUS MATERIALS

3.1.1 Pot, Piston, Sliding Plate, Guide Bars and Attachment Plates

Pot, piston, sliding plate, guide bars and all attachment plates must be made from austenitic stainless steel conforming to ASTM A240M Grade 316 L or approved equivalent for welded components, or Grade 316 or approved equivalent otherwise.

Where structural steel attachment plates are required (e.g. top attachment plate to steel girders), such plates must be made from structural steel conforming to AS/NZS 3678 and/or AS/NZS 3679.1 or approved equivalent.

3.1.2 Sliding Surfaces

Sliding surfaces must be made from stainless steel sheets conforming to ASTM A240M Grade 316 L or equivalent. The minimum thickness of stainless steel sheets must be 1.5 mm for sheets with their larger dimension being less than 800 mm, and 2.5 mm for larger sheets.

The sliding surface of the stainless steel sheet must be 2B surface finish, mechanically polished to a mirror finish with maximum surface roughness R_s of 0.4 µm.

3.1.3 Bolts, Nuts, Screws and Washers

All bolts, nuts, screws and washers must comply with Specification RMS D&C B240.
Stainless steel dowels must conform to ASTM A276 Grade 316L or equivalent for welded components or Grade 316 otherwise.

3.2 SLIDING PADS AND STRIPS

3.2.1 General

Polytetrafluoroethylene (PTFE) sheets for sliding pads and guide sliding strips must be made from 100% virgin PTFE conforming to ISO 13000-1 Grade 1, and etched on the side which is bonded to the steel.

The minimum thickness of PTFE must be 4.5 mm for pads or strips with no dimension exceeding 650 mm, or 6 mm for pads or strips with larger dimensions.

3.2.2 Sliding Pads

Sliding pads must be made from unfilled PTFE dimensionally stabilised moulded sheet, and must be dimpled and lubricated in accordance with AS 5100.4 on the face in contact with the sliding surface.

3.2.3 Guide Sliding Strips

Guide sliding strips must be made from durable filled PTFE, with the fillers being either milled glass fibre (25% maximum) or carbon fibre (25% maximum).

Alternatively, guide sliding strips may be a multilayered composite material, e.g. a three layer composite comprising a bronze backing strip, a sintered interlocking porous impregnated matrix, and an overlay of PTFE/lead, graphite/lead or similar mixture.

Guide sliding strips do not need to be dimpled.

3.3 ELASTOMERIC DISC

The elastomer used in the elastomeric disc must be 100% virgin natural rubber (polyisoprene). The elastomer must be plain, not laminated or fibre reinforced, and cured to satisfy the properties specified in Appendix B of AS 5100.4 for Type 50H.

3.4 INTERNAL SEALS

Internal seals must be made of polyoxymethylene (POM) or carbon filled PTFE complying with EN 1337-5 or equivalent. Provide evidence demonstrating faultless field performance of the seal type proposed.

Alternatively, internal seals may be made from rectangular brass sections conforming to AS/NZS 1567 (half-hard). Where the zinc content in the brass is greater than 15%, the brass must be inhibited against dezincification. Brass seals made of grade CuZn37 to EN 12163 or grade CuZn39Pb3 to EN 12164 are acceptable.

3.5 LUBRICANT

Lubricant for filling the dimples in the PTFE sliding pad and lubricating the top and bottom surfaces of the elastomeric disc must be made of silicone compounds. The lubricant must comply with Table B283.1.
Table B283.1 – Properties of Lubricant

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worked penetration</td>
<td>ASTM D217</td>
<td>< 260<sup>(1,2)</sup></td>
</tr>
<tr>
<td>Evaporation after 22 hr at 150°C</td>
<td>ASTM D972</td>
<td>< 2%</td>
</tr>
</tbody>
</table>

Notes:
⁽¹⁾ Unit of measurement is one tenth of a millimetre.
⁽²⁾ Penetration results up to 295 may be accepted for lubricants complying with the requirements of EN 1337-2 and EN 1337-5.

The lubricant must retain its room temperature consistency over a temperature range of −40°C to +200°C and be compatible with all the components in contact with it.

3.6 MATERIAL CONFORMITY

Provide documentary evidence including certificates of compliance to verify conformity of all materials to the requirements of this Specification.

Testing of materials must be carried out in laboratories accredited by NATA for the test, or in laboratories accredited for that test by an organisation with Mutual Recognition Agreement (MRA) with NATA. If no such facilities are available for a test, the test must be carried out in a laboratory accepted by the RMS Representative with the results reported in a format acceptable to the RMS Representative.

4 FABRICATION

4.1 GENERAL

HOLD POINT

Process Held: Fabrication of bearings.

Submission Details: All documents stated in Annexure B283/D at least 10 working days before the proposed commencement of fabrication of the bearings.

Release of Hold Point: The Nominated Authority will consider the submitted documents for compliance with this Specification, prior to authorising the release of the Hold Point.

All fabricated items of the bearings must be free from defects including weld spatter.

Round all sharp edges, corners and weld crests to a minimum radius of 1.5 mm. Chamfer the edges of drilled holes.
4.2 FLATNESS OF SURFACES

4.2.1 Bearing Internal Surfaces

The flatness of all bearing internal surfaces (refer Clause 1.3 for definition of “bearing internal surface”) of the bearing must not exceed 0.005 times the nominal dimension.

4.2.2 Plane Sliding Surfaces

The flatness of all plane sliding surfaces must not exceed 0.0003 times the sliding material’s larger dimension or 0.2 mm, whichever is greater.

4.2.3 Guide Bars

The flatness of contact surfaces of guide bars must not exceed 0.001 times the nominal dimension.

4.2.4 Attachment Plates

The flatness of attachment plates must conform to the requirements of Specification RMS D&C B201.

4.3 POT AND PISTON

4.3.1 General

The pot internal diameter must not exceed the piston rim diameter by more than 1.0 mm for bearings with metallic or POM internal seals, or 0.8 mm for bearings with PTFE seals.

Where required, machine the internal surfaces of the bearing to the flatness specified in Clause 4.2.1 and to a maximum surface roughness R_a of 6.3 µm.

4.3.2 Pot

Fabricate the cylinder and base plate of the pot from one piece of stainless steel.

Welding of a separate base plate to the cylinder may be accepted if supporting design calculations and/or experimental evidence are submitted showing that the strength of the welded component is equivalent to that made from a single piece of stainless steel.

For bearings which will be subjected to uplift loading at ULS, carry out inspection of the welding (if any) of ancillary elements of the bearings designed to carry the uplift loading, as follows:

(a) liquid penetration test on 100% of the weld;
(b) ultrasonic testing on at least 20% of the weld of each element.

4.3.3 Piston

Machine the piston from a single piece of stainless steel.

Bevel or curve the contact rim face of the piston, which bears against the pot wall, where the thickness of the rim exceeds 15 mm or the bearing ULS rotation exceeds 0.025 radians.
4.3.4 **External Seal**

Seal the gap between the pot and the piston against dust and moisture using either a small compression seal conforming to Specification RMS D&C B310 or a neutral cure silicone sealant or approved equivalent.

The seal must be able to accommodate the maximum ULS movements without being damaged.

4.4 **ELASTOMERIC Disc**

Manufacture each elastomeric disc from an individually moulded rubber slab.

Lubricate the disc using a lubricant complying with Clause 3.5 of this Specification.

In the unloaded condition, the lateral clearance between the pot and the elastomeric disc must not exceed 0.2% of the diameter of the elastomeric disc or 0.5 mm, whichever is greater.

4.5 **Internal Seal**

4.5.1 **POM or Carbon Filled PTFE Seals**

POM seal rings, where applicable, must be made from individual interlocking elements and moulded as an integral part of the elastomeric disc during the vulcanisation process.

Carbon filled PTFE seal rings, where applicable, must be completely recessed in to the elastomeric disc.

4.5.2 **Brass Seals**

Brass seals must consist of a number of split rings formed to fit snugly in recesses in the elastomeric disc and within the inside wall surface of the pot. Each ring must contain one vertical cut, made at 45° to the tangent, with a maximum gap of 1 mm. Install the rings such that the cuts of the individual rings are staggered equally or by a minimum of 90° relative to one another when the rings are fitted to the elastomeric disc.

The minimum number of rings must be two. Use three rings, where the outside diameter of the ring is greater than 700 mm or the specified rotational capacity is greater than 0.025 radians.

The minimum thickness of each ring must be 1.5 mm. The minimum width of rings must be 6 mm for ring diameters not exceeding 300 mm, and 10 mm for rings with larger diameters.

The rings must have a maximum surface roughness R_a of 6.3 µm.

4.6 **Stainless Steel Sliding Surface**

4.6.1 **General**

The stainless steel sheet in the assembled bearing must be wider than the PTFE pad, extending beyond the edges of the PTFE pad to accommodate the limits of translation specified in Clause 2.1.2.

Attach the stainless steel sheet to the backing plate by continuous welds along the edges. The backing plate must extend beyond the stainless steel sheet to accommodate the welds. The weld perimeter of the stainless steel sheet must not come in contact with the PTFE.
4.6.2 Welding

Welding must conform to AS/NZS 1554.6 Category 2B, surface condition II. The weld size must not exceed the thickness of the stainless steel sheet.

Submit welding procedures in accordance with AS/NZS 1554.6 prior to welding. The welding procedures must detail the welding sequence necessary to eliminate distortion and to ensure flatness of the sheet and its full contact with the backing plate.

After welding, the flatness of the sliding sheet must conform to that specified in Clause 4.2.2.

4.6.3 Passivation and Repolishing

Passivate all welds and heat affected zones of the stainless steel sheet and repolish the sheet to a maximum surface roughness R_a of 0.4 μm.

4.7 GUIDE BARS

4.7.1 General

Manufacture each guide bar from one piece of steel. Where connected by screws, recess the guide bars into the sliding plates, pistons or pots as applicable. Alternatively, the guide bar and the sliding plate, piston or pot as applicable may be manufactured from one piece of steel by machining, or by welding to form a single piece.

The two contact surfaces of the guide bar(s) must be parallel to each other, with a flatness conforming to that specified in Clause 4.2.3.

The maximum gap between a guide and its corresponding sliding surface must not exceed 3 mm when the other side is in full contact.

4.7.2 Sliding Surfaces

For each pair of mating sliding surfaces, use a combination of stainless steel strip/sheet welded as specified in Clause 4.6.1 to one surface, and a sliding strip in accordance with Clause 3.2.3 for the corresponding sliding surface. The sliding strip must be restrained by adhesive bonding and recessing and/or mechanical fixing.

4.8 PTFE SLIDING PAD AND STRIPS

Restrain the PTFE by adhesive bonding and recessing it into the backing material to a depth conforming to AS 5100.4 to prevent its extrusion with the protrusion being not less than that specified in EN 1337-2. The average adhesion-in-peel strength of the adhesive compound must not be less than 30 N when tested under standard conditions to ASTM C794.

The backing material to the PTFE and the mating surface must be flat and rigid so that the PTFE layer will be uniformly loaded. The flatness of the PTFE surface must conform to that specified in Clause 4.2.2.

The shoulder of the recess into the backing material must be sharp and square to resist extrusion of the PTFE. Do not leave any gap between the inner face of the recess and the PTFE.

Permanently lubricate the PTFE pad and strips in accordance with AS 5100.4.
4.9 ATTACHMENT PLATES

Use separate steel attachment plates for above and below the pot bearings. The minimum mean thickness of the attachment plates must be 20 mm.

Attachment plates may be tapered to correct lack of parallelism caused by various effects including longitudinal grade, crossfall in the carriageway and hog or camber of the superstructure.

5 PROTECTIVE TREATMENT

5.1 GENERAL

Do not apply protective treatment to any stainless steel component unless otherwise specified.

The protective treatment of the attachment plates where attached to steel girders, must be the same as that of the steel girders.

5.2 INSULATION

Insulate the stainless steel bearing from the structural steel attachment plates (where used) using suitable flat sheets, bushes and washers of at least 3 mm thickness, at the interface between the pot bearing and the attachment plates and around the bolts to the attachment plates.

For these sheets, bushes and washers, use resin laminated sheets and tubes made from an electrical insulating material complying with the performance requirements of Table B283.2.

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulating resistance after immersion in water</td>
<td>EN 60893-2</td>
<td>$\geq 5 \times 10^{10} \Omega$</td>
</tr>
<tr>
<td>Water absorption (3 mm)</td>
<td></td>
<td>$\leq 50 \text{ mg}$</td>
</tr>
<tr>
<td>Impact strength, notched Charpy</td>
<td></td>
<td>$\geq 10 \text{ kJ/m}^2$</td>
</tr>
</tbody>
</table>

Match drill holes through the insulating sheet, to accommodate the fixing screws to the top attachment plate.

6 TESTING OF BEARINGS

6.1 GENERAL

Test bearings in accordance with Clause 6 and at the frequency specified in Annexure B283/L. Carry out the vertical, lateral and rotation load tests on the same bearing.

Test bearings fully assembled, but without the external seal.

The direction of loads/rotations applied in all the tests must replicate the design conditions.
On completion of all load tests on each bearing tested, dismantle the bearing tested and inspect for the defects listed in Clause 6.4.

Re-lubricate all sliding surfaces and elastomeric discs and install the external seal for final assembly.

6.2 Geometrical Verification

Check bearing dimensions, flatness, surface roughness and clearances to verify compliance with the requirements of Clauses 3 and 4.

Measure flatness in all directions using a precision straight edge sliding on the surface and feeler gauges.

6.3 Load Tests

6.3.1 General

Carry out the types of load tests in accordance with Table B283.3.

<table>
<thead>
<tr>
<th>Bearing Type</th>
<th>Vertical</th>
<th>Lateral</th>
<th>Friction</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Free sliding</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Guided sliding</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The relevant load tests must be performed on the nominated bearing for testing.

Tests must be carried out in laboratories accredited by NATA for the test or laboratories accredited for that test by an organisation with Mutual Recognition Agreement with NATA, unless accepted otherwise by the RMS Representative.

6.3.2 Vertical Load Test

Load the bearings in compression to the maximum ULS vertical load shown on the Design Documentation drawings, maintain this load for one minute, and then release the load. Reapply the load to the maximum ULS vertical load and maintain it for a minimum loading period of three minutes. (The loading period is the time the bearing sustains a test load of at least 95% of the initial load.)

Carry out a visual inspection of the bearing while under the second stage loading and report any sign of damage in accordance with Clause 6.4.

6.3.3 Lateral Load Test

Test bearings which are required to resist lateral forces by applying the following test loads:

(a) maximum ULS lateral load while loaded in compression to the concurrent minimum ULS vertical load shown on the Design Documentation drawings;

(b) maximum ULS lateral load while loaded in compression to the concurrent maximum ULS vertical load shown on the Design Documentation drawings.
In both cases, apply the vertical load first and then apply the lateral loads gradually. Maintain the test loads for a minimum loading period of three minutes.

Carry out a visual inspection of the bearing while under the applied loading and report any sign of damage in accordance with Clause 6.4.

6.3.4 Rotation Capacity Test

Load the bearings in compression to a test load of 0.7 times the maximum ULS vertical load shown on the Design Documentation drawings while at the design rotation specified on the Design Documentation drawings. Maintain this vertical load for a minimum loading period of three minutes.

Carry out a visual inspection of the bearing while under the applied loading and report any sign of damage in accordance with Clause 6.4.

6.3.5 Coefficient of Friction Test

Determine the coefficient of friction of sliding surfaces using vertical loads corresponding to vertical pressures on the PTFE pad of 5 and 20 MPa, unless shown otherwise on the Design Documentation drawings, at an ambient temperature between 5°C and 35°C.

The test displacement must be equal to the design displacement value but not exceeding 50 mm. Apply the vertical load and maintain it for three minutes before starting sliding. The test sliding speed must be in the range of 2.5 to 25 mm/minute.

Record the maximum horizontal force during sliding. Repeat the sliding and the horizontal force measurements to obtain the average of five measurements. Where bearings are tested in pairs, calculate the coefficient of friction of the bearings using the equation below:

\[
\text{Coefficient of friction} = \frac{\text{Average horizontal force}}{2 \times \text{vertical load}}
\]

The measured coefficient of friction must not exceed the values specified in Table B283.4 for the relevant pressure on the PTFE.

Table B283.4 – Coefficient of Friction for Lubricated Sliding Surfaces

<table>
<thead>
<tr>
<th>PTFE pressure</th>
<th>5 MPa</th>
<th>15 MPa</th>
<th>20 MPa</th>
<th>≥ 30 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum coefficient of friction</td>
<td>0.04</td>
<td>0.025</td>
<td>0.02</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Note:
Interpolate friction values linearly for intermediate PTFE pressures.

6.4 CRITERIA FOR ACCEPTANCE

6.4.1 General

Reject any bearing that does not meet the requirements of the geometrical verification in Clause 6.2 or any of the load tests in Clause 6.3, or exhibits any signs of damage during or after the testing.

Such signs of damage include:
(a) splitting, extrusion or permanent deformation of the elastomer;
(b) tearing, cracking or permanent deformation of the PTFE sliding surfaces;
(c) cracking, indentation or permanent deformation of the internal seal or other part of the bearing;
(d) abrasive marks indicating abnormal contact between the metal surfaces of the bearing plates or piston, and the pot;
(e) failure or permanent deformations of guide bars.

6.4.2 Acceptance of Remainder

If a bearing is rejected, test two additional bearings from the group of bearing represented by the failed bearing. If both bearings meet the requirements of this Specification, the RMS Representative may accept the remaining bearings in the bearing group. Should one or both of the bearings not meet the requirements of this Specification, test each of the remaining bearings in the group for compliance.

6.5 BEARING REPORT

Provide a bearing report verifying that all bearings conform to the requirements of this Specification. The report must include:
(a) a summary of all test results with clear identification of the bearings tested;
(b) geometrical verification of all bearing dimensions;
(c) insulation material certification;
(d) if applicable, protective treatment certification.

7 IDENTIFICATION AND DELIVERY

7.1 IDENTIFICATION

Identify each bearing and fit a name plate to the bearing in accordance with AS 5100.4. Indicate the applicable installation locations of the bearings.

Ensure that the bearing orientation, the centreline and the direction(s) of movement as appropriate are readily identifiable to facilitate correct placement.

7.2 DELIVERY

HOLD POINT

Process Held: Delivery of bearings to site.
Submission Details: Bearing report in accordance with Clause 6.5, at least 10 working days before the proposed delivery of bearings to site.
Release of Hold Point: The Nominated Authority will consider the submitted documents for compliance with this Specification, prior to authorising the release of the Hold Point.

Provide temporary transit clips or equivalent, which must be easily removable, to hold the bearing components assembled during delivery. Do not remove the transit clips and/or bolts until after completion of installation in the bridge structure.
Supply mating parts of bearings in sets held together at the correct preset and skew with metal transit clips and/or bolts to prevent misalignment and/or damage of the components during transport and erection.

Do not remove the transit clips and/or bolts until after completion of installation in the bridge structure.

Protect bearings in dust and moisture resistant wrappings after assembly and during transportation to site.
ANNEXURES B283/A AND B283/B – (NOT USED)

ANNEXURE B283/C – SCHEDULES OF HOLD POINTS AND IDENTIFIED RECORDS

Refer to Clause 1.2.3.

C1 SCHEDULE OF HOLD POINTS

<table>
<thead>
<tr>
<th>Clause</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Submission of planning documents</td>
</tr>
<tr>
<td>7.2</td>
<td>Submission of bearing report</td>
</tr>
</tbody>
</table>

C2 SCHEDULE OF IDENTIFIED RECORDS

The records listed below are Identified Records for the purposes of RMS D&C Q6 Annexure Q/E.

<table>
<thead>
<tr>
<th>Clause</th>
<th>Description of the Identified Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Bearing design calculations, drawings and certification</td>
</tr>
<tr>
<td>2.2</td>
<td>Any variations from the previously approved bearing details</td>
</tr>
<tr>
<td>3.6</td>
<td>Documentary evidence of materials conformity</td>
</tr>
<tr>
<td>5.2</td>
<td>Insulation details, where applicable</td>
</tr>
<tr>
<td>6.5</td>
<td>Bearing report</td>
</tr>
</tbody>
</table>
ANNEXURE B283/D – PLANNING DOCUMENTS

Refer to Clause 1.2.4.

The following documents are a summary of documents that must be included in the PROJECT QUALITY PLAN. Review the requirements of this Specification and other contract documents to determine any additional documentation requirements.

<table>
<thead>
<tr>
<th>Clause</th>
<th>Description of Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.2</td>
<td>Technical procedure for welding of stainless steel sheet</td>
</tr>
<tr>
<td>4.8</td>
<td>Technical procedure for bonding and lubricating the PTFE pad</td>
</tr>
<tr>
<td>5.2</td>
<td>Technical procedures for insulation details</td>
</tr>
<tr>
<td>6.1</td>
<td>Technical procedure for dismantling and reassembly of test bearings</td>
</tr>
</tbody>
</table>

ANNEXURES B283/E TO B283/K – (NOT USED)
ANNEXURE B283/L – FREQUENCY OF TESTING

Refer to Clause 1.2.5.

Table B283/L.1 – Frequency of Testing

<table>
<thead>
<tr>
<th>Clause</th>
<th>Type of Test</th>
<th>Bearings per Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>≤ 10</td>
</tr>
<tr>
<td>6.2</td>
<td>Geometrical verification</td>
<td></td>
</tr>
<tr>
<td>6.3.2</td>
<td>Vertical load test</td>
<td></td>
</tr>
<tr>
<td>6.3.3</td>
<td>Lateral load test</td>
<td>1 per group</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Rotation capacity test</td>
<td></td>
</tr>
<tr>
<td>6.3.5</td>
<td>Coefficient of friction test</td>
<td>1 per stainless steel batch and PTFE batch combination⁽¹⁾</td>
</tr>
</tbody>
</table>

Notes:

⁽¹⁾ The test results are only valid where the stainless steel batch and PTFE batch combination tested is the same as that used for the bearings represented by the test sample. Past test results not more than two years old obtained for previous projects for the same PTFE and stainless steel batches may be accepted by the Project Verifier.
ANNEXURE B283/M – REFERENCED DOCUMENTS

Refer to Clause 1.2.6.

RMS Specifications

RMS D&C Q6 Quality Management System (Type 6)
RMS D&C B201 Steelwork for Bridges
RMS D&C B240 Supply of Bolts, Nuts, Screws and Washers
RMS D&C B284 Installation of Bridge Bearings
RMS D&C B310 Compression Seal Expansion Joints

Australian Standards

AS/NZS 1554.6 Structural steel welding – Welding stainless steels for structural purposes
AS/NZS 1567 Copper and copper alloys – Wrought rods, bars and sections
AS/NZS 3678 Structural steel – Hot-rolled plates, floorplates and slabs
AS/NZS 3679.1 Structural steel - Hot-rolled bars and sections
AS 5100 Bridge design
 AS 5100.4 Part 4: Bearings and deck joints
 AS 5100.6 Part 6: Steel and composite construction
AS/NZS ISO 9001 Quality management systems- Requirements

Other Standards

ASTM A240M Standard specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications
ASTM A276 Standard specification for stainless steel bars and shapes
ASTM C794 Standard test method for adhesion-in-peel of elastomeric joint sealants
ASTM D217 Standard test methods for cone penetration of lubricating grease
ASTM D972 Standard test method for evaporation loss of lubricating greases and oils
EN 1337 Structural bearings
 EN 1337-2 Part 2: Sliding elements
 EN 1337-5 Part 5: Pot bearings
EN 12163 Copper and copper alloys. Rod for general purposes
EN 12164 Copper and copper alloys. Rod for free machining purposes
EN 60893-2 Insulating materials. Industrial rigid laminated sheets based on thermosetting resins for electrical purposes. Part 2: Methods of test.
ISO 3274 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Nominal characteristics of contact (stylus) instruments
ISO 13000-1 Plastics – Polytetrafluoroethylene (PTFE) semi-finished products
 Part 1: Requirements and designation