ROADS AND MARITIME SERVICES (RMS)

RMS SPECIFICATION D&C B293

SPHERICAL BEARINGS – STAINLESS STEEL

NOTICE
This document is a Roads and Maritime Services D&C Specification. It has been developed for use with Design & Construct roadworks and bridgeworks contracts let by Roads and Maritime Services. It is not suitable for any other purpose and must not be used for any other purpose or in any other context.

Copyright in this document belongs to Roads and Maritime Services.

REVISION REGISTER

<table>
<thead>
<tr>
<th>Ed/Rev Number</th>
<th>Clause Number</th>
<th>Description of Revision</th>
<th>Authorised By</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed 1/Rev 0</td>
<td></td>
<td>First issue.</td>
<td>MCQ</td>
<td>10.08.18</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>CLAUSE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>II</td>
</tr>
<tr>
<td>RMS Copyright and Use of this Document</td>
<td>ii</td>
</tr>
<tr>
<td>Base Specification</td>
<td>ii</td>
</tr>
<tr>
<td>GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Structure of the Specification</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Definitions</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Quality Management System</td>
<td>2</td>
</tr>
<tr>
<td>1.5 Approved Bridge Components and Systems</td>
<td>3</td>
</tr>
<tr>
<td>DESIGN</td>
<td>3</td>
</tr>
<tr>
<td>2.1 General</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Design Calculations and Certifications</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Approved Sliding Material</td>
<td>4</td>
</tr>
<tr>
<td>MATERIALS</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Mating Sliding Surfaces</td>
<td>4</td>
</tr>
<tr>
<td>3.2 Ferrous Materials</td>
<td>5</td>
</tr>
<tr>
<td>3.3 Non-metallic Sliding Pads and Strips</td>
<td>5</td>
</tr>
<tr>
<td>3.4 Lubricant</td>
<td>6</td>
</tr>
<tr>
<td>3.5 Material Conformity</td>
<td>6</td>
</tr>
<tr>
<td>FABRICATION</td>
<td>7</td>
</tr>
<tr>
<td>4.1 General</td>
<td>7</td>
</tr>
<tr>
<td>4.2 Flatness of Surfaces</td>
<td>7</td>
</tr>
<tr>
<td>4.3 Bearing Concave and Convex Plates</td>
<td>7</td>
</tr>
<tr>
<td>4.4 Stainless Steel Sliding Surface</td>
<td>8</td>
</tr>
<tr>
<td>4.5 Guide Bars</td>
<td>8</td>
</tr>
<tr>
<td>4.6 Non-metallic Sliding Surfaces</td>
<td>9</td>
</tr>
<tr>
<td>4.7 Attachment Plates</td>
<td>9</td>
</tr>
<tr>
<td>PROTECTIVE TREATMENT</td>
<td>9</td>
</tr>
<tr>
<td>5.1 General</td>
<td>9</td>
</tr>
<tr>
<td>5.2 Insulation</td>
<td>9</td>
</tr>
<tr>
<td>TESTING OF BEARINGS</td>
<td>10</td>
</tr>
<tr>
<td>6.1 General</td>
<td>10</td>
</tr>
<tr>
<td>6.2 Geometrical Verification</td>
<td>10</td>
</tr>
<tr>
<td>6.3 Load Tests</td>
<td>10</td>
</tr>
<tr>
<td>6.4 Criteria for Acceptance</td>
<td>12</td>
</tr>
<tr>
<td>6.5 Bearing Report</td>
<td>12</td>
</tr>
<tr>
<td>IDENTIFICATION AND DELIVERY</td>
<td>12</td>
</tr>
<tr>
<td>7.1 Identification</td>
<td>12</td>
</tr>
<tr>
<td>7.2 Delivery</td>
<td>13</td>
</tr>
<tr>
<td>ANNEXURES B293/A TO B293/B – (NOT USED)</td>
<td>14</td>
</tr>
<tr>
<td>ANNEXURE B293/C – SCHEDULES OF HOLD POINTS AND IDENTIFIED RECORDS</td>
<td>14</td>
</tr>
<tr>
<td>C1 Schedule of Hold Points</td>
<td>14</td>
</tr>
</tbody>
</table>
FOREWORD

RMS COPYRIGHT AND USE OF THIS DOCUMENT

Copyright in this document belongs to Roads and Maritime Services.

When this document forms part of a deed

This document should be read with all the documents forming the Project Deed.

When this document does not form part of a contract

This copy is not a controlled document. Observe the Notice that appears on the first page of the copy controlled by RMS. A full copy of the latest version of the document is available on the RMS Internet website: http://www.rms.nsw.gov.au/business-industry/partners-suppliers/specifications/index.html

BASE SPECIFICATION

This document is based on Specification RMS B293 Edition 1 Revision 0.
RMS SPECIFICATION D&C B293
SPHERICAL BEARINGS – STAINLESS STEEL

1 GENERAL

1.1 SCOPE

This Specification sets out the requirements for the supply of stainless steel spherical approved sliding
material (ASM) bearings and associated attachment plates, including their design and fabrication.

For requirements on installation of bearings, refer to Specification RMS D&C B284.

1.2 STRUCTURE OF THE SPECIFICATION

This Specification includes a series of annexures that detail additional requirements.

1.2.1 (Not Used)

1.2.2 (Not Used)

1.2.3 Schedules of HOLD POINTS and Identified Records

The schedules in Annexure B293/C list the HOLD POINTS that must be observed. Refer to
Specification RMS D&C Q6 for the definition of HOLD POINTS.

The records listed in Annexure B293/C are Identified Records for the purposes of RMS D&C Q6
Annexure Q/E.

1.2.4 Planning Documents

The PROJECT QUALITY PLAN must include each of the documents and requirements listed in
Annexure B293/D and must be implemented.

1.2.5 Frequency of Testing

The Inspection and Test Plan must nominate the proposed testing frequency to verify conformity of
the item, which must not be less than the frequency specified in Annexure B293/L. Where a minimum
frequency is not specified, nominate an appropriate frequency. Frequency of testing must conform to
the requirements of RMS D&C Q6.

You may propose to the RMS Representative a reduced minimum frequency of testing. The proposal
must be supported by a statistical analysis verifying consistent process capability and product
characteristics. The RMS Representative may vary or restore the specified minimum frequency of
testing, either provisionally or permanently, at any time.

1.2.6 Referenced Documents

Standards, specifications and test methods are referred to in abbreviated form (e.g. AS 1234). For
convenience, the full titles are given in Annexure B293/M.
1.3 **DEFINITIONS**

The terms “you” and “your” mean “the Contractor” and “the Contractor’s” respectively.

The following definitions apply to this Specification:

- **Approved sliding material (ASM)**: A generic term adopted by AS 5100.4 for a new sliding material (not PTFE) based on a modified ultra-high molecular weight polyethylene and which has high compressive strength, low friction and high wear-resistance.

- **Bearing concave and convex plates**: Steel plates with curved (spherical) surfaces to accommodate bearing rotation.

- **Bearing group**: Bearings of the same type, with the same sliding pad and spherical surface geometry and with similar load capacity, for the purpose of testing. Bearings within a group may have different translational movement ranges.

- **Bearing type**: Fixed, free sliding or guided sliding bearing

- **Effective bearing temperature**: The maximum shade air temperature to AS 5100.2 minus 4°C. The term is used in the design of ASM pads.

- **Nominal dimension**: The distance between any two points.

- **Sliding plate**: A steel plate in a sliding bearing fitted with a sliding surface to allow relative movement between the plate and the bearing.

- **Spherical bearing**: Spherical ASM bearing as defined in AS 5100.4.

- **Structural Engineer**: A Professional Engineer who is a Chartered Member of Engineers Australia (or equivalent) practising in the field of structural engineering. An equivalent to membership of Engineers Australia would be an Engineer registered on the National Engineering Register (NER) in the general area of practice of Structural Engineering.

- **Surface roughness parameter (R_a)**: Measurement of roughness of a surface as specified in ISO 3274.

- **Surface roughness parameter (R_{yi})**: Measurement of roughness of a surface as specified in ISO 4287.

1.4 **QUALITY MANAGEMENT SYSTEM**

The manufacturer/supplier of the bearings under this Specification must have in place quality management systems independently certified as fully complying with AS/NZS ISO 9001, by an organisation accredited by JAS-ANZ or an affiliated international certification organisation. Provide evidence of the certification.

The RMS Representative may conduct audits and inspections of the suppliers’ procedures and processes during the course of the Contract.
1.5 **APPROVED BRIDGE COMPONENTS AND SYSTEMS**

Unless otherwise approved by the RMS Representative, use only spherical bearing types that have been approved by RMS. The list of RMS approved bridge proprietary products can be found at: http://www.rms.nsw.gov.au/business-industry/partners-suppliers/documents/tenders-contracts/listofapprovedbridgecomponentssystems.pdf

2 **DESIGN**

2.1 **GENERAL**

2.1.1 **Codes and Standards**

Design bearings to comply with the requirements of AS 5100.4, EN 1337, relevant European Technical Approvals and RMS Bridge Technical Directions, unless otherwise specified. The requirements of AS 5100.4 take precedence over EN1337 where there is a conflict between the two.

Design bolts to AS 5100.6.

Design steel components to AS 5100.6 or another bearing design standard approved by the RMS Representative. Regardless of the design standard used, the relevant capacity reduction factors in AS 5100.6 must apply.

2.1.2 **Design Loads and Movements**

Design spherical bearings for Ultimate Limit State (ULS) effects.

Design and dimension all associated plane sliding surfaces to accommodate the ULS movements plus an additional movement of ±25 mm, and all associated spherical sliding surfaces to accommodate the ULS rotation plus an additional rotation of 0.01 radians, without exposing the smaller sliding surface. Unintended metal to metal contact must not occur at the ULS movements or rotations.

Design the guide bars to withstand the lateral forces shown on the Design Documentation drawings and dimension them such that the bearing movement is guided throughout the specified limits of translation and rotation.

2.1.3 **ASM Pad Design – Temperature**

Unless specified otherwise, for the ASM pad design, use as the operating bearing temperature the effective bearing temperature (refer to Clause 1.3 for definition of “effective bearing temperature”) at the bridge location, but must not be less than 40°C.

2.1.4 **Other Requirements**

Allow for construction tolerances in the design and fabrication of the bearings and attachment plates, where required for the construction method adopted.

Design the bearings such that the fasteners connecting the bearings to the attachment plates can be replaced without lifting the bridge superstructure.

Design the bearings to allow their removal at a maximum jacking lift of 10 mm unless specified otherwise on the Design Documentation drawings.
The bearing attachment plates and anchor bolts must not obstruct the movement and rotation of the bearing and must allow its removal and replacement.

Where possible, position the larger of the mating sliding surfaces above the smaller to prevent dirt from accumulating on the sliding surfaces.

Provide for mechanical lifting and handling of the bearings where required.

2.2 DESIGN CALCULATIONS AND CERTIFICATIONS

Submit the following for each bearing group:

(a) Confirmation of all load cases (axial and shear loads, and rotation and movement in each direction, as applicable).

(b) Drawings of the assembled bearing and attachment plates to scale with overall dimensions including bearing concave and convex plates dimensions.

(c) Design calculations of the bearing including sliding pad mean and peak pressures, maximum bearing stress on substructure and superstructure giving method of calculation, forces on bolts and dowels with required sizes and grades, and stress checks on steel structural components.

(d) Any variations from the details of the bridge proprietary bearing as approved by the Roads and Maritime Services (refer to Clause 1.5).

(e) A certificate from a Structural Engineer (refer Clause 1.3 for definition of “Structural Engineer”) experienced in the structural design of bearings verifying that all bearings and attachments comply with the requirements of the Design Documentation drawings and this Specification.

2.3 APPROVED SLIDING MATERIAL

Submit details of the proposed ASM to the RMS Representative demonstrating proven performance as a sliding material and its suitability for the allowable maximum pressure on the ASM used in the design of the bearings, and for the coefficient of friction and wear rates of the ASM.

3 MATERIALS

3.1 MATING SLIDING SURFACES

Materials for sliding surfaces under this Specification include ASM, polytetrafluoroethylene (PTFE), composite materials, stainless steel sheets, and stainless steel plates.

Material combinations for mating sliding surfaces must conform to Table B293.1.
Table B293.1 – Combinations of Materials for Sliding Surfaces

<table>
<thead>
<tr>
<th>Type</th>
<th>Sliding Surface Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curved surface</td>
<td>ASM on stainless steel</td>
</tr>
<tr>
<td>Plane surface</td>
<td>ASM on stainless steel</td>
</tr>
<tr>
<td>Guides</td>
<td>ASM on stainless steel; or</td>
</tr>
<tr>
<td></td>
<td>PTFE on stainless steel; or</td>
</tr>
<tr>
<td></td>
<td>Composite material on stainless steel</td>
</tr>
</tbody>
</table>

The backing plates to the sliding surfaces must be adequately rigid when calculated using the method specified in EN1337-2, to ensure uniform loading and avoid unacceptable deformation.

3.2 **FERROUS MATERIALS**

3.2.1 **Bearing Plates, Sliding Plate, Guide Bars and Attachment Plates**

Concave and convex bearing plates, plane sliding plate, guide bars and attachment plates must be fabricated from austenitic stainless steel conforming to ASTM A240M Grade 316 L or approved equivalent for welded components, or Grade 316 or approved equivalent otherwise.

Where structural steel attachment plates are required (e.g. top attachment plate to steel girders), such plates must be made from structural steel conforming to AS/NZS 3678 and/or AS/NZS 3679.1 or approved equivalent.

3.2.2 **Metallic Sliding Surfaces**

Sliding surfaces must be made from stainless steel sheets conforming to ASTM A240M Grade 316 L or equivalent. The minimum thickness of stainless steel sheets must be 2.5 mm.

The sliding surface of the stainless steel sheet must be 2B surface finish, mechanically polished to mirror finish with a maximum surface roughness \(R_a \) of 0.4 \(\mu \)m or roughness \(R_{y5i} \) of 1 \(\mu \)m.

3.2.3 **Bolts, Nuts, Screws and Washers**

All bolts, nuts, screws and washers used must comply with Specification RMS D&C B240.

Stainless steel dowels must conform to ASTM A276 Grade 316L or equivalent for welded components or Grade 316 otherwise.

3.3 **NON-METALLIC SLIDING PADS AND STRIPS**

3.3.1 **General**

The minimum thickness of ASM pads and strips must be 8 mm.

3.3.2 **Sliding Pads**

Plane or curved sliding pads must be made of ASM, and must be dimpled and filled with lubricant conforming to Clause 3.4.
3.3.3 Guide Sliding Strips

Guide sliding strips must be made from either ASM or PTFE. The PTFE for guide sliding strips must be durable filled PTFE, with the fillers being either milled glass fibre (25% maximum) or carbon fibre (25% maximum).

Alternatively, guide sliding strips may be a multilayered composite material, e.g. a three layer composite comprising a bronze backing strip, a sintered interlocking porous impregnated matrix, and an overlay of PTFE/lead, graphite/lead or similar mixture.

Guide sliding strips do not need to be dimpled.

3.4 LUBRICANT

Lubricant for filling the dimples in the ASM sliding pad must be made of silicone compounds. The lubricant must comply with Table B293.2.

<table>
<thead>
<tr>
<th>Property</th>
<th>Method of Test</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worked penetration</td>
<td>ASTM D217</td>
<td>< 260 (1, 2)</td>
</tr>
<tr>
<td>Evaporation after 22 hr at 150°C</td>
<td>ASTM D972</td>
<td>< 2%</td>
</tr>
</tbody>
</table>

Notes:
(1) Unit of measurement is one tenth of a millimetre.
(2) Penetration results up to 295 may be accepted for lubricants complying with the requirements of EN 1337-2.

The lubricant must retain its room temperature consistency over a temperature range of –40°C to +200°C and be compatible with all the components in contact with it.

3.5 MATERIAL CONFORMITY

Provide documentary evidence including certificates of compliance to verify conformity of all materials to the requirements of this Specification.

Provide a certificate of compliance with each bearing supplied confirming that the AMS used is the same material as that approved for the particular bearing (refer to Clause 1.5).

Testing of materials must be carried out in laboratories accredited by NATA for the test or in laboratories accredited for that test by an organisation with Mutual Recognition Agreement (MRA) with NATA. If no such facilities are available for a test, the test must be carried out in a laboratory approved by the RMS Representative with the results reported in a format acceptable to the RMS Representative.
4 FABRICATION

4.1 GENERAL

<table>
<thead>
<tr>
<th>HOLD POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Held: Fabrication of bearings.</td>
</tr>
<tr>
<td>Submission Details: All documents stated in Annexure B293/D, at least 10 working days before the proposed commencement of fabrication of the bearings.</td>
</tr>
<tr>
<td>Release of Hold Point: The Nominated Authority will consider the submitted documents for compliance with this Specification, prior to authorising the release of the Hold Point.</td>
</tr>
</tbody>
</table>

All fabricated items of the bearings must be free from defects including weld spatter.

Round all sharp edges, corners and weld crests to a minimum radius of 1.5 mm except where specified otherwise in this Specification. Chamfer the edges of drilled holes.

4.2 FLATNESS OF SURFACES

4.2.1 Curved Sliding Surfaces

The flatness along the profile of all curved surfaces must not exceed the tolerance specified for plane surfaces in Clause 4.2.2.

4.2.2 Plane Sliding Surfaces

The flatness of all plane sliding surfaces must not exceed 0.0003 times the sliding material larger dimension or 0.2 mm, whichever is greater.

4.2.3 Guide Bars

The flatness of contact surfaces of guide bars must not exceed 0.001 times the nominal dimension.

4.2.4 Attachment Plates

The flatness of attachment plates must conform to the requirements of Specification RMS D&C B201.

4.3 BEARING CONCAVE AND CONVEX PLATES

Manufacture each plate from one piece of steel.

The RMS Representative may permit welded stainless steel plates in large bearings where plates with the required thickness are not commercially available. In such cases, submit to the RMS Representative details of the proposed welding and associated testing and inspections demonstrating that welding will not compromise the plate performance.

Welding of ancillary elements to allow fixing of the bearing to the attachment plates must conform to AS 1554.6 Category 1B, surface condition II.
For bearings which will be subjected to uplift loading at ULS, carry out inspection of the welding (if any) of ancillary elements of the bearings designed to carry the uplift loading, as follows:
(a) liquid penetrant test on 100% of the weld;
(b) ultrasonic testing on at least 20% of the weld of each element;
unless required otherwise by the RMS Representative.

4.4 STAINLESS STEEL SLIDING SURFACE

4.4.1 General

The stainless steel sheet in the assembled bearing must be larger than the ASM pad, extending beyond the edges of the ASM pad to accommodate the limits of translation specified in Clause 2.1.2.

Attach the stainless steel sheet to the backing plate by continuous welds along the edges. The backing plate must extend beyond the stainless steel sheet to accommodate the welds. The welded perimeter of the stainless steel sheet must not come in contact with the ASM.

4.4.2 Welding

Welding must conform to AS/NZS 1554.6 Category 2B, surface condition II. Use prequalified welding consumables in accordance with AS/NZS 1554.6 for the combination of materials involved. The weld size must not exceed the thickness of the stainless steel sheet.

Submit welding procedures in accordance with AS/NZS 1554.6 prior to welding. The welding procedures must detail the welding sequence necessary to eliminate distortion and to ensure flatness of the sheet and its full contact with the backing plate.

After welding, the flatness of the sliding sheet must conform to the requirements of Clause 4.2.

4.4.3 Passivation and Repolishing

Passivate all welds and heat affected zones of the stainless steel sheet and repolish the sheet to a maximum surface roughness R_a of 0.4 μm.

4.5 GUIDE BARS

Manufacture each guide bar from one piece of steel. Where connected by screws, recess the guide bars into the plane sliding plates, or the bearing convex or concave plates, as applicable. Alternatively, the guide bar and the connecting sliding plate may be manufactured from one piece of steel by machining or by welding to form a single piece.

The two contact surfaces of the guide bar(s) must be parallel to each other, with a flatness conforming to that specified in Clause 4.2.3.

The maximum gap between a guide and its corresponding sliding surface must not exceed 3 mm when the other side is in full contact.

The combination of sliding surfaces of guided bars must be in accordance with Clause 3.1.
4.6 NON-METALLIC SLIDING SURFACES

4.6.1 ASM Pads

Restrain the ASM pad by recessing it into the backing material to a depth conforming to AS 5100.4.

The flatness of the ASM surfaces must conform to the requirements of Clause 4.2.

The shoulder of the recess into the backing material must be sharp and square to resist extrusion of ASM. Do not leave any gap between the inner face of the recess and ASM apart from intermittent gaps of not more than the larger of 0.001 times the diameter or 0.6 mm.

Permanently lubricate the ASM pad in accordance with AS 5100.4.

4.6.2 ASM, PTFE and Composite Material Guide Strips

Restrain ASM and PTFE sliding strips by recessing in addition to mechanical fixing and/or adhesive bonding. The average adhesion-in-peel strength of the adhesive compound must not be less than 30 N when tested under standard conditions to ASTM C794.

Restrain composite material sliding strips by mechanical fixing.

The flatness of the sliding surfaces must conform to the requirements of Clause 4.2.

4.7 ATTACHMENT PLATES

Use separate steel attachment plates above and below the spherical bearings. The minimum mean thickness of the attachment plates must be 20 mm.

Attachment plates may be tapered to correct lack of parallelism caused by various effects including longitudinal grade, crossfall in the carriageway and hog or camber of the superstructure.

5 PROTECTIVE TREATMENT

5.1 GENERAL

Do not apply protective treatment to any stainless steel component unless otherwise specified.

The protective treatment of the attachment plates where attached to steel girders, must be the same as that of the steel girders.

5.2 INSULATION

Insulate the stainless steel bearing from the structural steel attachment plates (where used) using suitable flat sheets, bushes and washers of at least 3 mm thickness, at the interface between the pot bearing and the attachment plates and around the bolts to the attachment plates.

For these sheets, bushes and washers, use resin laminated sheets and tubes made from an electrical insulating material complying with the performance requirements of Table B293.3.
Table B293.3 – Performance Requirements for Insulating Material

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulating resistance after immersion in water</td>
<td>BS EN 60893-2</td>
<td>$\geq 5 \times 10^{10}$ Ω</td>
</tr>
<tr>
<td>Water absorption (3 mm)</td>
<td></td>
<td>≤ 50 mg</td>
</tr>
<tr>
<td>Impact strength, notched Charpy</td>
<td></td>
<td>≥ 10 kJ/m²</td>
</tr>
</tbody>
</table>

Match drill holes through the insulating sheet, to accommodate the fixing screws to the top attachment plate.

6 TESTING OF BEARINGS

6.1 GENERAL

Test bearings in accordance with Clause 6 and at the frequency specified in Annexure B293/L. Carry out the vertical, lateral and rotation load tests on the same bearing.

Test bearings fully assembled.

The direction of loads/rotations applied in all the tests must replicate the design conditions.

On completion of all load tests on each bearing tested, dismantle the bearing tested and inspect for the defects listed in Clause 6.4.

Re-lubricate all sliding surfaces for final assembly.

6.2 GEOMETRICAL VERIFICATION

Check bearing dimensions, flatness, surface roughness and clearances to verify compliance with the requirements of Clauses 3 and 4.

6.3 LOAD TESTS

6.3.1 General

Carry out the types of load tests in accordance with Table B293.4.

Table B293.4 – Types of Load Tests Required

<table>
<thead>
<tr>
<th>Bearing Type</th>
<th>Vertical</th>
<th>Lateral</th>
<th>Friction</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Free sliding</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Guided sliding</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The relevant load tests must be performed on the nominated bearing for testing.
Tests must be carried out in laboratories accredited by NATA for the test or laboratories accredited for that test by an organisation with Mutual Recognition Agreement with NATA, unless accepted otherwise by the RMS Representative.

6.3.2 Vertical Load Test

Load the bearings in compression to the maximum ULS vertical load shown on the Design Documentation drawings, maintain this load for one minute, and then release the load. Reapply the load to the maximum ULS vertical load and maintain it for a minimum loading period of three minutes (the loading period is the time the bearing sustains a test load of at least 95% of the initial load).

Carry out a visual inspection of the bearing while under the second stage loading and report any sign of damage in accordance with Clause 6.4.

6.3.3 Lateral Load Test

Test bearings which are required to resist lateral forces by applying the following test loads:

(a) maximum ULS lateral load while loaded in compression to the concurrent minimum ULS vertical load shown on the Design Documentation drawings;

(b) maximum ULS lateral load while loaded in compression to the concurrent maximum ULS vertical load shown on the Design Documentation drawings.

In both cases, apply the vertical load first and then apply the lateral loads gradually. Maintain the test loads for a minimum loading period of three minutes.

Carry out a visual inspection of the bearing while under the applied loading, and report any sign of damage in accordance with Clause 6.4.

6.3.4 Rotation Capacity Test

Load the bearings in compression to a test load of 0.7 times the maximum ULS vertical load shown on the Design Documentation drawings while at the design rotation specified in the Design Documentation drawings. Maintain this vertical load for a minimum loading period of three minutes.

Carry out a visual inspection of the bearing while under the applied loading and report any sign of damage in accordance with Clause 6.4.

6.3.5 Coefficient of Friction Test

Determine the coefficient of friction of plane sliding surfaces using vertical loads corresponding to vertical pressures on the ASM pad of 15 and 60 MPa, unless shown otherwise on the Design Documentation drawings, at an ambient temperature between 5°C and 35°C.

The test displacement must be equal to the design displacement value but not exceeding 50 mm. Apply the vertical load and maintain it for three minutes before starting sliding. The test sliding speed must be in the range of 2.5 to 25 mm/minute.

Record the maximum horizontal force during sliding. Repeat the sliding and the horizontal force measurements to obtain the average of five measurements. Where bearings are tested in pairs, calculate the coefficient of friction of the bearings using the equation below:

\[
\text{Coefficient of friction} = \frac{\text{Average horizontal force}}{2 \times \text{vertical load}}
\]
The measured coefficient of friction must not exceed the values specified in Table B293.5 for the relevant pressure on the ASM.

Table B293.5 – Coefficient of Friction for Lubricated Sliding Surfaces

<table>
<thead>
<tr>
<th>ASM pressure</th>
<th>15 MPa</th>
<th>45 MPa</th>
<th>60 MPa</th>
<th>≥ 90 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum coefficient of friction</td>
<td>0.04</td>
<td>0.02</td>
<td>0.016</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Note: Interpolate friction values linearly for intermediate ASM pressures.

6.4 CRITERIA FOR ACCEPTANCE

6.4.1 General

Reject any bearing that does not meet the requirements of the geometrical verification in Clause 6.2 or any of the load tests in Clause 6.3, or exhibits any signs of damage during or after the testing.

Such signs of damage include:

(a) tearing, cracking or excessive deformation of the sliding surfaces;

(b) cracking, indentation or permanent deformation of any part of the bearing;

(c) abrasive marks indicating abnormal contact between the metal surfaces of the bearing;

(d) failure or permanent deformations of guide bars.

6.4.2 Acceptance of Remainder

If a bearing is rejected, test two additional bearings from the group of bearing represented by the failed bearing. If both bearings meet the requirements of this Specification, the RMS Representative may accept the remaining bearings in the bearing group. Should one or both of the bearings not meet the requirements of this Specification, test each of the remaining bearings in the group for compliance.

6.5 BEARING REPORT

Provide a bearing report verifying that all bearings conform to the requirements of this Specification. The report must include:

(a) a summary of all test results with clear identification of the bearings tested;

(b) geometrical verification of all bearing dimensions;

(c) insulation material certification;

(d) if applicable, protective treatment certification.

7 IDENTIFICATION AND DELIVERY

7.1 IDENTIFICATION

Identify each bearing and fit a name plate to the bearing in accordance with AS 5100.4. Indicate the applicable installation locations of the bearings.
Ensure that the bearing orientation, the centreline and the direction(s) of movement as appropriate are readily identifiable to facilitate correct placement.

7.2 DELIVERY

<table>
<thead>
<tr>
<th>HOLD POINT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Held:</td>
<td>Delivery of bearings to site.</td>
</tr>
<tr>
<td>Submission Details:</td>
<td>Bearing test report in accordance with Clause 6.5, at least 10 working days before the proposed date for delivery of bearings to site.</td>
</tr>
<tr>
<td>Release of Hold Point:</td>
<td>The Nominated Authority will consider the submitted documents for compliance with this Specification, prior to authorising the release of the Hold Point.</td>
</tr>
</tbody>
</table>

Provide temporary transit clips or equivalent, which must be easily removable, to hold the bearing components assembled during delivery. Do not remove the transit clips and/or bolts until after completion of installation in the bridge structure.

Supply mating parts of bearings in sets held together at the correct preset and skew with metal transit clips and/or bolts to prevent misalignment and/or damage of the components during transport and erection.

Protect bearings in dust and moisture resistant wrappings after assembly and during transportation to site and keep them in a secured horizontal condition.
ANNEXURES B293/A TO B293/B– (NOT USED)

ANNEXURE B293/C – SCHEDULES OF HOLD POINTS AND IDENTIFIED RECORDS

Refer to Clause 1.2.3.

C1 SCHEDULE OF HOLD POINTS

<table>
<thead>
<tr>
<th>Clause</th>
<th>Point</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Hold</td>
<td>Submission of planning documents</td>
</tr>
<tr>
<td>7.2</td>
<td>Hold</td>
<td>Submission of bearing report</td>
</tr>
</tbody>
</table>

C2 SCHEDULE OF IDENTIFIED RECORDS

The records listed below are Identified Records for the purposes of RMS D&C Q6 Annexure Q/E.

<table>
<thead>
<tr>
<th>Clause</th>
<th>Description of the Identified Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Bearing design calculations, drawings and certification</td>
</tr>
<tr>
<td>2.2</td>
<td>Any variations from the previously approved bearing details</td>
</tr>
<tr>
<td>3.5</td>
<td>Documentary evidence of materials conformity</td>
</tr>
<tr>
<td>5.2</td>
<td>Insulation details</td>
</tr>
<tr>
<td>6.5</td>
<td>Bearing report</td>
</tr>
</tbody>
</table>

ANNEXURE B293/D – PLANNING DOCUMENTS

Refer to Clause 1.2.4.

The following documents are a summary of documents that must be included in the PROJECT QUALITY PLAN. The requirements of this Specification and others included in the deed must be reviewed to determine additional documentation requirements.

<table>
<thead>
<tr>
<th>Clause</th>
<th>Description of Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Details of built up sections proposed for concave and convex plates, where applicable.</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Technical procedure for welding of stainless steel sheet</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Technical procedure for lubricating the ASM pad</td>
</tr>
<tr>
<td>5.2</td>
<td>Technical procedures for insulation details</td>
</tr>
<tr>
<td>6.1</td>
<td>Technical procedure for dismantling and reassembly of test bearings</td>
</tr>
</tbody>
</table>

ANNEXURES B293/E TO B293/K– (NOT USED)
ANNEXURE B293/L – MINIMUM FREQUENCY OF TESTING

Refer to Clause 1.2.5.

Table B293/L.1 – Frequency of Testing

<table>
<thead>
<tr>
<th>Clause</th>
<th>Type of Test</th>
<th>Bearings per Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>≤ 10</td>
</tr>
<tr>
<td>6.2</td>
<td>Geometrical verification</td>
<td></td>
</tr>
<tr>
<td>6.3.2</td>
<td>Vertical load test</td>
<td></td>
</tr>
<tr>
<td>6.3.3</td>
<td>Lateral load test</td>
<td>1 per group</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Rotation capacity test</td>
<td></td>
</tr>
<tr>
<td>6.3.5</td>
<td>Coefficient of friction test</td>
<td>1 per stainless steel batch and ASM batch combination(^{(1)})</td>
</tr>
</tbody>
</table>

Notes:

\(^{(1)}\) The test results are only valid where the stainless steel batch and ASM batch combination tested is the same as that used for the bearings represented by the test sample. Past test results not more than two years old obtained for previous projects for the same ASM and stainless steel batches may be accepted by the RMS Representative.
ANNEXURE B293/M – REFERENCED DOCUMENTS

Refer to Clause 1.2.6.

RMS Specifications

- RMS D&C Q6 Quality Management System (Type 6)
- RMS D&C B201 Steelwork for Bridges
- RMS D&C B240 Supply of Bolts, Nuts, Screws and Washers
- RMS D&C B284 Installation of Bridge Bearings

Australian Standards

- AS/NZS 1554.6 Structural steel welding - Welding stainless steels for structural purposes
- AS/NZS 3678 Structural steel - Hot-rolled plates, floorplates and slabs
- AS/NZS 3679.1 Structural steel - Hot-rolled bars and sections
- AS 5100 Bridge design
 - AS 5100.2 Part 2: Design loads
 - AS 5100.4 Part 4: Bearings and deck joints
 - AS 5100.6 Part 6: Steel and composite construction
- AS/NZS ISO 9001 Quality management systems – Requirements

Other Standards

- ASTM A240M Standard specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications
- ASTM A276 Standard specification for stainless steel bars and shapes
- ASTM C794 Standard test method for adhesion-in-peel of elastomeric joint sealants
- ASTM D217 Standard test methods for cone penetration of lubricating grease
- ASTM D972 Standard test method for evaporation loss of lubricating greases and oils
- BS EN 60893-2 Insulating materials - Industrial rigid laminated sheets based on thermosetting resins for electrical purposes. Part 2: Methods of test.
- EN 1337-2 Structural bearings. Part 2: Sliding elements
- ISO 3274 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Nominal characteristics of contact (stylus) instruments
- ISO 4287 Geometrical Product Specifications (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters