DESIGN ASSUMPTIONS

GENERAL NOTES

SCALE

DESIGN LOADING: SM1600.

THE MAXIMUM GAP BETWEEN PSC PLANKS: 320mm.

DECK: 180mm.

THE NOMINAL THICKNESS OF CAST-IN-PLACE REINFORCED CONCRETE IS 300mm.

STANDARD DRAWING No

B0314

STANDARD DRAWING

PSC PLANK GIRDER

18m SPAN

EDMS No

DS2017/000899

APPROVED FOR USE

ISSUED

03/04/2017

EDMSTANDARDS@RMS.NSW.GOV.AU

R.RAVINDRA

03/04/2017

PRINCIPAL ENGINEER BRIDGES

COPYRIGHT ROADS AND MARITIME SERVICES 2017

1 1 0

ISSUED...

REVISION ISSUE

A1

MARCH 2017

STATEMENTS

CONCRETE EXPOSURE CLASSIFICATION

MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.

MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT TRANSFER OF Prestress SHALL BE 30 MPa.

NOMINAL COVER TO REINFORCEMENT NEAREST TO THE CONCRETE SURFACE SHALL BE 25mm UNLESS SPECIFIED OTHERWISE.

THE COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK BE 287 kN.

FORCE OF 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING STRENGTH 1946 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 100 kN.

THE COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK BE 287 kN.

FORCE OF 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING STRENGTH 1946 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 100 kN.

THE COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK BE 287 kN.

FORCE OF 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING STRENGTH 1946 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 100 kN.

THE COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK BE 287 kN.

FORCE OF 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING STRENGTH 1946 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 100 kN.

THE COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK BE 287 kN.

FORCE OF 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING STRENGTH 1946 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 100 kN.

THE COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK BE 287 kN.

FORCE OF 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING STRENGTH 1946 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 100 kN.

THE COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK BE 287 kN.

FORCE OF 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING STRENGTH 1946 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 100 kN.