GENERAL NOTES

- The minimum 28-day compressive strength of grout shall be 40MPa.
- Cementitious grout Emprezo Superflow HF or approved equivalent.
- Grouting shall be carried out to ensure that the formed recesses are completely filled and that there are no voids under the base plates.
- The top of baseplates shall be determined from the figures in Table 1 accordingly.
- The minimum and maximum thickness of grout shall be 15mm and 70mm at any location.
- The shear deflection due to self-weight of the superstructure shall be less than 6mm.

ELEVATION OF PLANK AFTER DECK CONSTRUCTION

+ Denotes 170 MN subject to adequate anchorages of strands and longitudinal reinforcement.

TABLE 1

<table>
<thead>
<tr>
<th>MEASURED HOG</th>
<th>MA</th>
<th>MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>No</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

Hogs shall be measured within two weeks prior to the erection of the planks and the grade of the top of baseplates shall be determined from the figures in Table 1 accordingly.

The minimum 28-day compressive strength of grout shall be 40MPa.

The minimum 28-day compressive strength of grout shall be 40MPa.

© Copyright Roads and Maritime Services 2018

BEARING DETAILS

PSC PLANK GIRDER

STANDARD DRAWING

EDMS No

DATE

ISSUED

STATUS

DEC 2018

Copy of this standard for non-commercial use is permitted. Further reproduction is prohibited. 

Send feedback on this standard to standardbridgedrawings@rms.nsw.gov.au

Copyright

ISSUES

1ST

2ND

3RD

4TH

5TH

6TH

7TH

8TH

9TH

10TH

11TH

12TH

13TH

14TH

15TH

16TH

17TH

18TH

19TH

20TH

21ST

22ND

23RD

24TH

25TH

26TH

27TH

28TH

29TH

30TH

31ST

COPYRIGHT ROADS AND MARITIME SERVICES 2018
DESIGN ASSUMPTIONS

STANDARD BAR SHAPES DIAGRAM

GENERAL NOTES

SCALE

OR AS SHOWN

CONCRETE EXPOSURE CLASSIFICATION:

MINIMUM 28 DAY COMpressive STRENGTH OF CONCRETE SHALL BE 50 MPa.

MINIMUM Compressive STRENGTH OF CONCRETE AT TRANSFER OF PRESTRESS SHALL BE 30 MPa.

REQUIRED COVER TO REINFORCEMENT NEAREST TO THE CONCRETE SURFACE SHALL BE 35mm UNLESS SPECIFIED OTHERWISE.

THE REQUIRED COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1870 MPa, RELAX 2%, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IS 8mm AT 28 DAYS, ASSUMING:

1. THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION BY THE APPLICATION OF EPOXY RESIN.
2. THE MANUFACTURE OF THE PLANK BY VIBRATING TABLE OR FORM VIBRATORS.
3. RIGID STEEL FORMWORK MOULD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.
4. THE REQUIRED COVER TO REINFORCEMENT NEAREST TO THE CONCRETE SURFACE SHALL BE 35mm UNLESS SPECIFIED OTHERWISE.
5. THE INCLUDED ANGLE OF ANY BEND SHALL BE A RIGHT ANGLE.
6. ALL BENDS SHALL BE FITMENT BENDS IN ACCORDANCE WITH AS 5100.5.13.
7. ALL STRANDS TO BE STRAIGHT.
8. ELASTIC MODULUS AT TRANSFER = 32,800 MPa.
9. DENSITY = 2550 kg/cu m
10. CONCRETE EXPOSURE CLASSIFICATION:...
11. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
12. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
13. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
14. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
15. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
16. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
17. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
18. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
19. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
20. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
21. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
22. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
23. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
24. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
25. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
26. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
27. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
28. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
29. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
30. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
31. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
32. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
33. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
34. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
35. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
36. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
37. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
38. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
39. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
40. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
41. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
42. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
43. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
44. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
45. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
46. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
47. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
48. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
49. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
50. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
51. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
52. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
53. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
54. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
55. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
56. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
57. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
58. MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
STANDARD BAR SHAPES DIAGRAM

S 7.880
A 140
X 430

Dimensions shown on bar shapes diagram are measured from the outside faces of the bars and are in millimetres. Bar size is the nominal diameter in millimetres bars shall be grade 800 to AS 4671. The included angle of any bend shall be a right angle. All bends shall be fitment bends in accordance with AS 5100.5.13.

GENERAL NOTES

CONCRETE EXPOSURE CLASSIFICATION:...
MINIMUM 28 DAY COMpressive STRENGTH OF CONCRETE SHALL BE 50 MPa.
MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT TRANSFER OF Prestress shall be 30 MPa.
REQUIRED COVER TO REINFORCEMENT NEAREST TO THE CONCRETE SURFACE shall be 35mm unless specified otherwise.
THE REQUIRED COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.
STRAINS SHALL BE 1 WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1870 MPa, RELAX 2, TO AS/NSZ 4672.1 WITH MINIMUM BREAKING FORCE OF 184 kN.
THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK shall be 138 kN.
IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 100%.
THE END OF PLANK and exposed strands shall be sealed against corrosion by the application of epoxy resin.
THE END OF PLANK and exposed strands shall be sealed against corrosion by the application of epoxy resin.
A PLANK TYPE C - FIRST THREE PAIRS OF Q1 BARS ARE NOT REQUIRED AT EITHER END OF PLANK.
PLANK TYPE B - FIRST THREE PAIRS OF Q1 BARS ARE NOT REQUIRED AT ONE END OF PLANK.
PLANK TYPE A - FIRST THREE PAIRS OF Q1 BARS ARE REQUIRED AT EACH END OF PLANK.

STANDARD DRAWING

PSC PLANK GIRDER
8m SPAN

DEC 2018
B0304
CONCRETE EXPOSURE CLASSIFICATION:
MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT TRANSFER OF PRESTRESS SHALL BE 36 MPa.

REQUIRED COVER TO REINFORCEMENT NEAREST TO THE CONCRETE SURFACE SHALL BE 35mm UNLESS SPECIFIED OTHERWISE.
THE COVER REQUIRED SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

STRANDS SHALL BE 1-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 184 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.
THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK SHALL BE 184 kN.

CONCRETE EXPOSURE CLASSIFICATION:
- ELASTIC MODULUS AT TRANSFER = 32 800 MPa
- DENSITY = 2550 kg/cu m
- CAST IN PLACE REINFORCED CONCRETE SURFACE SHALL BE 35mm UNLESS SPECIFIED OTHERWISE.

OF PlANK
- ELASTIC BEARING. 5 DEEP RECESS FOR LAMINATED ELASTOMERIC BEARING.

50 x 20 DEEP RECESS FOR PLACEMENT OF 18 THICK FIBRE CEMENT FORMWORK SHEETING

5 DEEP RECESS FOR LAMINATED ELASTOMERIC BEARINGS.

SIDE OF RECESS TO SUIT BEARING TYPE USED

OF PlANK

THIS SURFACE SHALL BE MADE ROUGH IN THE MANUFACTURE OF THE PLANK BY BROOM FINISHING TRANSVERSELY.

PLANK TYPE C - FIRST THREE PAIRS OF Q2 BARS ARE REQUIRED AT EACH END OF PLANK.
PLANK TYPE B - FIRST THREE PAIRS OF Q2 BARS ARE NOT REQUIRED AT EACH END OF PLANK.
PLANK TYPE A - ... REQUIRED

STANDARD BAR SHAPES DIAGRAM

DIMENSIONS SHOWN ON BAR SHAPES DIAGRAM ARE MEASURED FROM THE OUTSIDE FACES OF THE BARS AND ARE IN MILLIMETRES.
BAR SIZE IS THE NOMINAL DIAMETER IN MILLIMETRES.
BARS SHALL BE GRADE D500N TO AS/NZS 4671.
THE INCLUDED ANGLE OF ANY BEND SHALL BE A RIGHT ANGLE.
ALL BENDS SHALL BE FITMENT BENDS IN ACCORDANCE WITH AS 5100.5.13.
STANDARD BAR SHAPES DIAGRAM

DIMENSIONS SHOWN ON BAR SHAPES DIAGRAM ARE MEASURED FROM THE OUTSIDE FACES OF THE BARS AND ARE IN MILLIMETRES.
Bar size is the nominal diameter in millimetres bars shall be grade 500N to AS/NZS 4671.

THE INCLUDED ANGLE OF ANY BEND SHALL BE A RIGHT ANGLE.
ALL BENDS SHALL BE FITMENT BENDS IN ACCORDANCE WITH AS 5100.5.13.

PLANK TYPE A - FIRST THREE PARS OF Q2 BARS ARE REQUIRED AT EACH END OF PLANK.
PLANK TYPE B - FIRST THREE PARS OF Q2 BARS ARE NOT REQUIRED AT ONE END OF PLANK.
PLANK TYPE C - FIRST THREE PARS OF Q2 BARS ARE NOT REQUIRED AT EITHER END OF PLANK.

CONCRETE EXPOSURE CLASSIFICATION: ...
MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
MINIMUM COMPERATIVE STRENGTH OF CONCRETE AT TRANSFER OF PRESTRESS SHALL BE 30 MPa.
REQUIRED COVER TO REINFORCEMENT NEAREST TO THE CONCRETE SURFACE SHALL BE 35mm UNLESS SPECIFIED OTHERWISE.
THE REQUIRED COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOULD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.
THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.
STRAIN IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.

PLANK TYPE C - FIRST THREE PAIRS OF Q2 BARS ARE NOT REQUIRED AT EITHER END OF PLANK.
PLANK TYPE B - FIRST THREE PAIRS OF Q2 BARS ARE NOT REQUIRED AT ONE END OF PLANK.
PLANK TYPE A - FIRST THREE PAIRS OF Q2 BARS ARE REQUIRED AT EACH END OF PLANK.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH THE OUTER EDGE OF PLANK.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.

ELASTIC MODULUS AT TRANSFER = 32 800 MPa
DENSITY = 2550 kg/cu m

THE Nominal thickness of cast-in-place reinforced concrete DECK: 180mm
THE maximum gap between PSC planks: 320mm
DESIGN LOADING: SM1600
DESIGN ASSUMPTIONS

GENERAL NOTES

SCALE

DESIGN LOADING: SM1600.

THE MAXIMUM GAP BETWEEN PSC PLANKS: 320mm.

DECK: 180mm.

THE NOMINAL THICKNESS OF CAST-IN-PLACE REINFORCED CONCRETE IS 300mm.

STANDARD BAR SHAPES DIAGRAM

STRANDS AND INTERNAL REINFORCEMENT NOT SHOWN

ELEVATION

PLAN

SECTION

VIEW

STANDARD BRIDGE DRAWINGS

PSC PLANK GIRDER

11m SPAN

COPYRIGHT ROADS AND MARITIME SERVICES 2018

DEC 2018

STANDARD DRAWING

ISSUED

DIRECTOR BRIDGES AND STRUCTURES

W. Ariyaratne

21.12.2018

standardbridgedrawings@rms.nsw.gov.au

Send feedback on this standard to:

Director Bridges and Structures

W. Ariyaratne

21.12.2018

Standard Bridge Drawings

PSC Plank Girder

11m Span

Design Loading: SM1600

DESIGN ASSUMPTIONS

GENERAL NOTES

CONCRETE EXPOSURE CLASSIFICATION:...

MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.

MINIMUM COMPREHENSIVE STRENGTH OF CONCRETE AT TRANSFER OF PRESTRESS SHALL BE 36 MPa.

REQUIRED COVER TO REINFORCEMENT NEAREST TO THE CONCRETE SURFACE SHALL BE 35mm UNLESS SPECIFIED OTHERWISE.

THE REQUIRED COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm. TENSILE STRENGTH 1780 MPa. RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

THE FORCES IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IS 184 kN.

STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

STRAINS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1780 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IS 184 kN.

STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1780 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IS 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1780 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IS 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1780 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IS 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1780 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IS 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1780 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IS 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1780 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IS 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1780 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IS 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1780 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IS 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1780 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IS 184 kN.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1780 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 138 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IS 184 kN.
DESIGN ASSUMPTIONS

GENERAL NOTES

DESIGN LOADING: SM1600.

THE MAXIMUM GAP BETWEEN PSC PLANKS: 320mm.

DECK: 180mm.

THE NOMINAL THICKNESS OF CAST-IN-PLACE REINFORCED CONCRETE IS 300mm.

SCALE

STANDARD DRAWING

ISSUE DATE

REVISION ISSUE

STATUS

APPROVED FOR USE

STANDARD DRAWING

ISSUE DATE

REVISION ISSUE

DRAWING TO:

SEND FEEDBACK ON THIS STANDARD TO:

DIRECTOR BRIDGES AND STRUCTURES

W.Ariyaratne

21.12.2018

COPYRIGHT ROADS AND MARITIME SERVICES 2018

EACH END.

UPRIGHT POSITION AND SUPPORTED AT NOT MORE THAN 600mm FROM DURING STORAGE, TRANSPORT AND HANDLING, PLANK SHALL BE IN AN.

MASS OF PLANK IS APPROXIMATELY 8.3 TONNES.

- NO LOADS EXCEPT PLANK SELF WEIGHT

- STORAGE IN OPEN AIR, AFTER STEAM CURING, AT 20 deg C AVERAGE TEMPERATURE AND RELATIVE HUMIDITY IN RANGE 50% - 75%

- STEAM CURING AT 70 deg C FOR 8 HOURS AFTER CASTING

- ELASTIC MODULUS AT TRANSFER = 32 800 MPa

- DENSITY = 2550 kg/cu m

AND IS 18mm AT 28 DAYS, ASSUMING:

CALCULATED HOG OF PLANK AT TRANSFER IS 11mm

BY THE APPLICATION OF EPOXY RESIN.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK FORCE OF 184 kN.

STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1800 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 100 kN.

AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION BY THE APPLICATION OF EPOXY RESIN.

CALCULATEDhog OF PLANK AT TRANSFER IS 11mm AND IS 18mm AT 28 DAYS, ASSUMING:

- DENSITY = 2500 kg/m3

- ELASTIC MODULUS AT TRANSFER = 32 800 MPa

- STEAM CURING AT 70 deg C FOR 8 HOURS AFTER CASTING

- STORAGE IN OPEN AIR, AFTER STEAM CURING, AT 20 deg C AVERAGE TEMPERATURE AND RELATIVE HUMIDITY IN RANGE 50% - 75%

- NO LOADS EXCEPT PLANK SELF WEIGHT

MASS OF PLANK IS APPROXIMATELY 8.3 TONNES.

DURING STORAGE, TRANSPORT AND HANDLING, PLANK SHALL BE IN AN UPRIGHT POSITION AND SUPPORTED AT NOT MORE THAN 600mm FROM EACH END.

DESIGN ASSUMPTIONS

THE NOMINAL THICKNESS OF CAST-IN-PLACE REINFORCED CONCRETE DECK: 180mm.

THE MAXIMUM GAP BETWEEN PSC PLANKS: 320mm.

DESIGN LOADING: SM1600.

STANDARD DRAWING
DESIGN LOADING: SM1600
THE MAXIMUM GAP BETWEEN PSC PLANKS: 320mm.
DECK: 180mm.
THE NOMINAL THICKNESS OF CAST-IN-PLACE REINFORCED CONCRETE: 300mm.

GENERAL NOTES
CONCRETE EXPOSURE CLASSIFICATION:...
MINIMUM 28 DAY COMPRRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
MINIMUM COMPRRESSIVE STRENGTH OF CONCRETE AT TRANSFER OF PRESTRESS SHALL BE 36 MPa.
REQUIRED COVER TO REINFORCEMENT NEAREST TO THE CONCRETE SURFACE SHALL BE 35mm UNLESS SPECIFIED OTHERWISE.
THE REQUIRED COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOULD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.
STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING STRENGTH 1980 MPa.
STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1870 MPa, RELAX 2, TOAS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 114kN.
THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IS 184 kN.
THE FORCES IN EACH END OF THE PLANK IS 158 kN.
AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION.
ELASTOMERIC BEARING (EACH END OF PLANK) 5 DEEP RECESS FOR LAMINATED ELASTOMERIC BEARING.

PLANK TYPE A...
PLANK TYPE B...
PLANK TYPE C...

250 350
9 SPACES AT 50=450 75
16/12.7mm STRANDS NOT SHOWN
THESE STRANDS SHALL BE SHEAVED FOR DISTANCE OF 200mm AT EACH END

ALL STRANDS TO BE STRAIGHT

5 DEEP RECESS FOR LAMINATED ELASTOMERIC BEARING (EACH END OF PLANK)
NOMINAL DIAMETER IN MILLIMETRES.
BARS SHALL BE GRADE D500N TO AS/NZS 4671.
BAR SIZE IS THE NOMINAL DIAMETER IN MILLIMETRES.
THE INCLUDED ANGLE OF ANY BEND SHALL BE A RIGHT ANGLE.
ALL BENDS SHALL BE FITMENT BENDS IN ACCORDANCE WITH AS 5100.5.13.

STANDARD BAR SHAPES DIAGRAM
DIMENSIONS SHOWN ON BAR SHAPES DIAGRAM ARE MEASURED FROM THE OUTSIDE FACES OF THE BARS AND ARE IN MILLIMETRES.
BAR SIZE IS THE NOMINAL DIAMETER IN MILLIMETRES.
THE INCLUDED ANGLE OF ANY BEND SHALL BE A RIGHT ANGLE.
ALL BENDS SHALL BE FITMENT BENDS IN ACCORDANCE WITH AS 5100.5.13.
DESIGN ASSUMPTIONS

GENERAL NOTES

SCALE OR AS SHOWN

DESIGN LOADING: SM1600.

THE MAXIMUM GAP BETWEEN PSC PLANKS: 320mm.

DECK: 180mm.

THE NOMINAL THICKNESS OF CAST-IN-PLACE REINFORCED CONCRETE 300mm

STANDARD BAR SHAPES DIAGRAM

CONCRETE EXPOSURE CLASSIFICATION:...

MINIMUM 3-DAY COMpressive STRENGTH OF CONCRETE SHALL BE 50 MPa.

MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT TRANSFER OF PRESTRESS SHALL BE 30 MPa.

REQUIRED COVER TO REINFORCEMENT NEAREST TO THE CONCRETE SURFACE SHALL BE 35mm UNLESS SPECIFIED OTHERWISE.

THE REQUIRED COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOULD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

PLAN

PLANK TYPE A - REQUIRED
PLANK TYPE B - REQUIRED
PLANK TYPE C - REQUIRED

STRAINS NOT SHOWN

PLAN

PLANK TYPE A - FIRST THREE PAIRS OF Q2 BARS ARE REQUIRED AT EACH END OF PLANK
PLANK TYPE B - FIRST THREE PAIRS OF Q2 BARS ARE NOT REQUIRED AT ONE END OF PLANK
PLANK TYPE C - FIRST THREE PAIRS OF Q2 BARS ARE NOT REQUIRED AT EITHER END OF PLANK

VIEW

SECTION

STANDARD DRAWING

PSC PLANK GIRDER

14m SPAN

THE NOMINAL THICKNESS OF CAST-IN-PLACE REINFORCED CONCRETE DECK: 180mm.

THE MAXIMUM GAP BETWEEN PSC PLANKS: 320mm.

DESIGN LOADING: SM1600.

MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.

CONCRETE EXPOSURE CLASSIFICATION:...

MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.

MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.

MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.

MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.

MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.

MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.

MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.
DESIGN LOADING: SM1600.

THE MAXIMUM GAP BETWEEN PSC PLANKS: 320mm.

DECK: 180mm.

THE NOMINAL THICKNESS OF CAST-IN-PLACE REINFORCED CONCRETE: 300mm.

STANDARD BAR SHAPES DIAGRAM

5 DEEP RECESS FOR LAMINATED ELASTOMERIC BEARING (EACH END OF PLANK)

DENOTES DIMENSION TO BE DETERMINED BY THE DESIGNER TO SUIT ANCHORAGE OF STRANDS AND REINFORCEMENT

GENERAL NOTES

CONCRETE EXPOSURE CLASSIFICATION:...

MINIMUM 7-DAY COMpressive STRENGTH OF CONCRETE SHALL BE 25 MPa...

MINIMUM COMpressive STRENGTH OF CONCRETE AT TRANSFER OF PRESTRESS SHALL BE 30 MPa...

REQUIRED COVER TO REINFORCEMENT NEAREST TO THE CONCRETE SURFACE SHALL BE 30mm UNLESS SPECIFIED OTHERWISE.

THE REQUIRED COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

STRAINS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK shall be 138kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 184kN.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION BY THE APPLICATION OF EPOXY RESIN.

AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH THE REQUIRED COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

STRAINS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE STRENGTH 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK shall be 138kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 184kN.

DESIGN ASSUMPTIONS

THE NOMINAL THICKNESS OF CAST-IN-PLACE REINFORCED CONCRETE

DECK: 180mm

THE MAXIMUM GAP BETWEEN PSC PLANKS: 320mm

DESIGN LOADING: SM1600
DESIGN LOADING: SM1600.
The maximum gap between PSC planks: 320mm.
Deck: 180mm.
The nominal thickness of cast-in-place reinforced concrete is 300mm.

Standard Bar Shapes Diagram:
- Dimensions shown on bar shapes diagram are measured from the outside faces of the bars and are in millimetres.
- Bar size is the nominal diameter in millimetres.
- Bars shall be grade 500MPa to AS/NZS 4671.
- All bends shall be fitment bends in accordance with AS 5100.5.13.
- Ends of PSC planks shall be chamfered 10 x 10 or rounded to R10.

General Notes:
- Concrete exposure classification...minimum 28-day compressive strength of concrete shall be 50 MPa.
- Minimum compressive strength of concrete at transfer of prestress shall be 30 MPa.
- Required cover to reinforcement nearest to the concrete surface shall be 35mm unless specified otherwise.
- The required cover specified is based on the PSC being cast in a rigid steel formwork mold with intense compaction using a vibrating table or form vibrators.
- The force in each 12.7mm dia strand at the mid-span of the plank shall be 138 kN.
- The force in each strand shall be sheathed for distance of 1000mm at each end.
- The maximum gap between PSC planks: 320mm.
- Design loading: SM1600.

Elevation:
- Strands and internal reinforcement not shown.
- Q2 11-N12-L-150, Q2 2-X12-L-250, Q2 9-12-X-150, Q1 1-N12-X-250, Q1 9-12-X-150.
- There are 5 deep recess for laminated elastomeric bearing (each end of plank).
- These strands shall be sheathed for distance of 1000mm at each end.
- The included angle of any bend shall be a right angle.
- Strands not shown.

Plan:
- Plank type A: first three pairs of Q2 bars are required at each end of plank.
- Plank type B: first three pairs of Q2 bars are not required at one end of plank.
- Plank type C: first three pairs of Q2 bars are not required at either end of plank.

View:
- All strands to be straight.
- Strands and internal reinforcement not shown.

Section 2:
- These strands shall be sheathed for distance of 1000mm at each end.
- Strands not shown.

Standard Drawing:
- PSC Plank Girder
- 16m span
- Design loading: SM1600
- Status: A1
- Date: DEC 2018
- Issued: 2
- Standard Drawings @ RMS NSW.gov.au
- Standardbridgedrawings@rms.nsw.gov.au
DESIGN LOADING: SM1600.

THE MAXIMUM GAP BETWEEN PSC PLANKS: 320mm.

DECK: 180mm.

THE NOMINAL THICKNESS OF CAST-IN-PLACE REINFORCED CONCRETE 300mm.

STANDARD DRAWING No

EDMS No

DATE

APPROVED FOR USE

STANDARD DRAWING ISSUE

REVISION ISSUE

ISSUED

STATUS

COPYRIGHT ROADS AND MARITIME SERVICES 2018

THE MANUFACTURE OF THE PLANK BY

THIS SURFACE SHALL BE MADE ROUGH IN

THE REQUIRED COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A

CERMENT FORMWORK SHEETING

PLACEMENT OF 18 THICK FIBRE

50 x 20 DEEP RECESS FOR

ELASTOMERIC BEARING.

5 DEEP RECESS FOR LAMINATED

ELASTOMERIC BEARING.

SIZE OF RECESS TO SUIT BEARING

TYPE USED

PREREQUISITE TO BE DETERMINED

BY THE DESIGNER TO SUIT ANCHORAGE

OF STRANDS AND RENFORCEMENT

GENERAL NOTES

CONCRETE EXPOSURE CLASSIFICATION:

MINIMUM 28 DAY COMpressive STRENGTH OF CONCRETE SHALL BE 50 MPa.

MINIMUM COMpressive STRENGTH OF CONCRETE AT TRANSFER OF PRESTRESS SHALL BE 50 MPa.

REQUIRED COVER TO RENFORCEMENT NEAREST TO THE CONCRETE

SURFACE SHALL BE 35mm UNLESS SPECIFIED OTHERWISE.

THE REQUIRED COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A

VIBRATING TABLE OR FORM VIBRATORS.

STRANDS SHALL BE 7-WIRE, ORDINARY, DIAMETER 12.7mm, TENSILE

STRENGTH 1870 MPa, RELAX 2, TO AS/NS 4672.1 WITH MINIMUM BREAKING

FORCE OF 164 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK

SHALL BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION

AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH

BE 138 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK

SHALL BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK CONSIDER

WITH Q1 BARS

Q2 11-N12-L-150 LAPPED WITH Q1 BARS

2 SETS OF Q1 5-N12-X-50

PLANK TYPE A - FIRST THREE PAIRS OF Q2 BARS ARE REQUIRED AT EACH END OF PLANK

PLANK TYPE B - FIRST THREE PAIRS OF Q2 BARS ARE NOT REQUIRED AT ONE END OF PLANK

PLANK TYPE C - FIRST THREE PAIRS OF Q2 BARS ARE NOT REQUIRED AT EITHER END OF PLANK

Q3 4-N20-S STAGGER IN PLAN

SPACED AS SHOWN IN SECTION

Q2 11-N12-L-150 LAPPED WITH Q1 BARS

54 BUNDLES OF Q1 1-N12-X-150

Q1 5-N12-X-60 LAPPED WITH Q1 BARS

2 SETS OF Q2 11-N12-L-150

6 SETS OF Q2 11-N12-L-150

SPECIAL SHAPES DIAGRAM

DIMENSIONS SHOWN ON BAR SHAPES DIAGRAM ARE MEASURED FROM THE OUTSIDE FACES OF THE BARS

AND ARE IN MILLIMETRES.

BAR SIZE IS THE NOMINAL DIAMETER IN MILLIMETRES.

THE INCLUDED ANGLE OF ANY BEND SHALL BE A

RIGHT ANGLE

ALL BENDS SHALL BE FITMENT BENDS IN ACCORDANCE

WITH AS 5100.5.13.

THE MANDATED PREFERRED METHOD OF CASTING CONCRETE IS WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A

VIBRATING TABLE OR FORM VIBRATORS.
DESIGN ASSUMPTIONS

GENERAL NOTES

STANDARD DRAWING No

PSC PLANK GIRDER

DATE

APPROVED FOR USE

REVISION ISSUE

ISSUED

STATUS

STANDARD DRAWING

ISSUE DATE

SEND FEEDBACK ON THIS STANDARD

DIRECTOR BRIDGES AND STRUCTURES

W.Ariyaratne

21.12.2018

CONCRETE EXPOSURE CLASSIFICATION:...

MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE SHALL BE 50 MPa.

MINIMUM COMpressive STRENGTH OF CONCRETE AT TRANSFER OF PRESTRESS SHALL BE 30 MPa.

REQUIRED COVER TO REINFORCEMENT NEAREST TO THE CONCRETE SURFACE SHALL BE 35mm UNLESS SPECIFIED OTHERWISE.

THE REQUIRED COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

RIGID STEELFORMWORK MOULD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

THE REQUIRED COVER SPECIFIED IS BASED ON THE PLANK BEING CAST IN A RIGID STEEL FORMWORK MOLD WITH INTENSE COMPACTION USING A VIBRATING TABLE OR FORM VIBRATORS.

THE INCLUDED ANGLE OF ANY BEND SHALL BE A RIGHT ANGLE.

ALL STRANDS TO BE STRAIGHT.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 184 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK SHALL BE 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

THE FORCES IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 155 kN.

AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION BY THE APPLICATION OF EPOXY RESIN.

CALCULATED HOG OF PLANK AT TRANSFER IS 17mm BY THE APPLICATION OF EPOXY RESIN.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 184 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK SHALL BE 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

THE FORCES IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 155 kN.

AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION BY THE APPLICATION OF EPOXY RESIN.

CALCULATED HOG OF PLANK AT TRANSFER IS 17mm BY THE APPLICATION OF EPOXY RESIN.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 184 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK SHALL BE 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

THE FORCES IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 155 kN.

AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION BY THE APPLICATION OF EPOXY RESIN.

CALCULATED HOG OF PLANK AT TRANSFER IS 17mm BY THE APPLICATION OF EPOXY RESIN.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 184 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK SHALL BE 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

THE FORCES IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 155 kN.

AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION BY THE APPLICATION OF EPOXY RESIN.

CALCULATED HOG OF PLANK AT TRANSFER IS 17mm BY THE APPLICATION OF EPOXY RESIN.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 184 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK SHALL BE 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

THE FORCES IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 155 kN.

AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION BY THE APPLICATION OF EPOXY RESIN.

CALCULATED HOG OF PLANK AT TRANSFER IS 17mm BY THE APPLICATION OF EPOXY RESIN.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 184 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK SHALL BE 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

THE FORCES IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 155 kN.

AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION BY THE APPLICATION OF EPOXY RESIN.

CALCULATED HOG OF PLANK AT TRANSFER IS 17mm BY THE APPLICATION OF EPOXY RESIN.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 184 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK SHALL BE 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

THE FORCES IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 155 kN.

AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION BY THE APPLICATION OF EPOXY RESIN.

CALCULATED HOG OF PLANK AT TRANSFER IS 17mm BY THE APPLICATION OF EPOXY RESIN.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 184 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK SHALL BE 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.

THE FORCES IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 155 kN.

AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION BY THE APPLICATION OF EPOXY RESIN.

CALCULATED HOG OF PLANK AT TRANSFER IS 17mm BY THE APPLICATION OF EPOXY RESIN.

THE END OF PLANK AND EXPOSED STRANDS SEALED AGAINST CORROSION AFTER TRANSFER OF PRESTRESS, STRANDS SHALL BE CUT FLUSH WITH BE 138 kN.

IMMEDIATELY AFTER THE RELEASE OF THE TENSIONING JACK SHALL BE 184 kN.

THE FORCE IN EACH 12.7mm DIA STRAND AT THE MID-SPAN OF THE PLANK SHALL BE 1870 MPa, RELAX 2, TO AS/NZS 4672.1 WITH MINIMUM BREAKING FORCE OF 164 kN.
DENOTES DIMENSION TO BE DETERMINED BY THE DESIGNER TO SUIT GEOMETRY AND ANCHORAGE OF STRAINS AND REINFORCEMENT

DENOTES DIMENSION FOR 7m TO 8m SPAN PSC PLANKS

THE NUMBER OF BUNDLES 'X' IS DEPENDANT ON THE PSC PLANK LENGTH

BAR MARK 'L' SHALL BE REPLACED WITH 'A' FOR 7m TO 8m SPAN PSC PLANK LENGTHS

LONGITUDINAL REINFORCEMENT AND PRESTRESSING STRANDS NOT SHOWN

BAR SPACING IS GIVEN ALONG # OF PLANK

GENERAL NOTES

THESE DETAILS APPLY TO PSC PLANKS WITH SKEWED ENDS AND SHALL BE READ IN CONJUNCTION WITH RELEVANT SPAN LENGTH PSC PLANK STANDARD DRAWINGS.

DENOTES DIMENSIONS SHOWN FOR "X" BARS AND ARE IN MILLIMETERS.

DIMENSIONS SHOWN ON BAR SHAPES DIAGRAM ARE MEASURED FROM THE OUTSIDE FACES OF THE BARS AND ARE IN MILLIMETERS.

THE TRANVERSE DIMENSIONS SHOWN FOR "X" BARS ARE NORMAL TO THE PLANK "L" BAR SIZE IS THE NOMINAL DIAMETER IN MILLIMETERS.

BARS SHALL BE GRADE D500N TO AS/NZS 4671.

ALL BENDS SHALL BE FITTED BENDS IN ACCORDANCE WITH AS 5100.5.
PLAN

CONCRETE

PARALLEL TO SKEW
Q6 5-N12-X-60
AT COMPOSITE ENDS ONLY
Q1 3-N12-L-120 TIED TO Q2

500
100
100
100
200

LONGITUDINAL REINFORCEMENT
600 OR ROUNDED TO R10
BE CHAMFERED 10 x 10

BOTTOM EDGES SHALL
BE CHAMFERED 10 x 10 OR ROUNDED TO R10

PLAN

REINFORCEMENT

BAR SPACING IS GIVEN ALONG EDGES OF PLANK
LONGITUDINAL REINFORCEMENT AND PRESTRESSING STRANDS NOT SHOWN
THE NUMBER OF BUNDLES X IS DEPENDANT ON THE PSC PLANK LENGTH
BAR MARK 'L' SHALL BE REPLACED WITH 'A' FOR 7m TO 8m SPACER PLANK LENGTHS
BAR MARK 'A' SHALL BE REPLACED WITH 'X' FOR 7m TO 8m SPAN PSC PLANK LENGTHS
THE INCLUDED ANGLE OF ANY BEND SHALL BE A RIGHT ANGLE.
BARS SHALL BE GRADE D500N TO AS/NZS 4671.
BAR SIZE IS THE NOMINAL DIAMETER IN MILLIMETRES.
THE TRANSVERSE DIMENSIONS SHOWN FOR X BARS ARE NORMAL FROM THE OUTSIDE FACES OF THE BARS AND ARE IN MILLIMETRES.
DIMENSIONS SHOWN ON BAR SHAPES DIAGRAM ARE MEASURED TO THE PLANK.

GENERAL NOTES

THESE DETAILS APPLY TO PSC PLANKS WITH SKEWED ENDS AND SHALL BE READ IN CONJUNCTION WITH RELEVANT SPAN LENGTH PSC PLANK STANDARD DRAWINGS.
DESIGN LOADING: SM1600.

DIMENSIONS DENOTE DIMENSION TO BE DETERMINED BY THE DESIGNER TO SUIT GEOMETRY AND ANCHORAGE OF STRANDS AND REINFORCEMENT.

STANDARD BAR SHAPES DIAGRAM

A
L
160
430
1m TO 8m SPAN PLANKS ONLY
1m TO 18m SPAN PLANKS ONLY

S
L
X
160
430
480
480

100 500 400mm

STANDARD DRAWING
PSC PLANK GIRDER
SKEW 21-30

COPYRIGHT ROADS AND MARITIME SERVICES 2018

STANDARD BRIDGE DRAWINGS
standardbridgedrawings@rms.nsw.gov.au
LONGITUDINAL REINFORCEMENT

5 deep recess for elastomeric bearing pad. Size of recess to suit bearing type used.

Bottom edges shall be chamfered 10 x 10 or rounded to R10.

BE CHAMFERED 10 x 10 BOTTOM EDGES SHALL

BEAMS AND REINFORCEMENT TO SUIT GEOMETRY AND ANCHORAGE OF STRANDS AND PRESTRESSING STRANDS NOT SHOWN.

BAR SPACING IS GIVEN ALONG 
OF PLANK

BAR MARK 'L' SHALL BE REPLACED WITH 'A' FOR 7m TO 8m SPAN PSC PLANK LENGTHS.

THE NUMBER OF BUNDLES 'X' IS DEPENDANT ON THE PSC PLANK LENGTH.

GENERAL NOTES

DIMENSIONS SHOWN ON BAR SHAPES DIAGRAM ARE MEASURED FROM THE OUTSIDE FACES OF THE BARS AND ARE IN MILLIMETERS. THE TRANSVERSE DIMENSIONS SHOWN FOR "X" BARS ARE NORMAL TO THE PLANK.

BAR SIZE IS THE NOMINAL DIAMETER IN MILLIMETERS.

BARS SHALL BE GRADE D500N TO AS/NZS 4671.

THE INCLUDED ANGLE OF ANY BEND SHALL BE A RIGHT ANGLE. ALL BENDS SHALL BE FITMENT BENDS IN ACCORDANCE WITH AS 5100.5.

THE TRANSVERSE DIMENSIONS SHOWN FOR "X" BARS ARE NORMAL FROM THE OUTSIDE FACES OF THE BARS AND ARE IN MILLIMETERS. DIMENSIONS SHOWN ON BAR SHAPES DIAGRAM ARE MEASURED FROM THE CENTERLINE OF THE BARS.

5 DEEP RECESS FOR ELASTOMERIC BEARING PAD. SIZE OF RECESS TO SUIT BEARING TYPE USED.

PLAN

CONCRETE

TRIM FIRST 'X' BAR TO ACHIEVE NOMINAL COVER.

PLAN

REINFORCEMENT

LONGITUDINAL REINFORCEMENT TO SUIT GEOMETRY AND ANCHORAGE OF STRANDS AND PRESTRESSING STRANDS NOT SHOWN.

BAR SPACING IS GIVEN ALONG 
OF PLANK

BAR MARK 'L' SHALL BE REPLACED WITH 'A' FOR 7m TO 8m SPAN PSC PLANK LENGTHS.

THE NUMBER OF BUNDLES 'X' IS DEPENDANT ON THE PSC PLANK LENGTH.

GENERAL NOTES

DIMENSIONS SHOWN ON BAR SHAPES DIAGRAM ARE MEASURED FROM THE OUTSIDE FACES OF THE BARS AND ARE IN MILLIMETERS. THE TRANSVERSE DIMENSIONS SHOWN FOR "X" BARS ARE NORMAL TO THE PLANK.

BAR SIZE IS THE NOMINAL DIAMETER IN MILLIMETERS.

BARS SHALL BE GRADE D500N TO AS/NZS 4671.

THE INCLUDED ANGLE OF ANY BEND SHALL BE A RIGHT ANGLE. ALL BENDS SHALL BE FITMENT BENDS IN ACCORDANCE WITH AS 5100.5.

THE TRANSVERSE DIMENSIONS SHOWN FOR "X" BARS ARE NORMAL FROM THE OUTSIDE FACES OF THE BARS AND ARE IN MILLIMETERS. DIMENSIONS SHOWN ON BAR SHAPES DIAGRAM ARE MEASURED FROM THE CENTERLINE OF THE BARS.

5 DEEP RECESS FOR ELASTOMERIC BEARING PAD. SIZE OF RECESS TO SUIT BEARING TYPE USED.

PLAN

CONCRETE

TRIM FIRST 'X' BAR TO ACHIEVE NOMINAL COVER.

PLAN

REINFORCEMENT

LONGITUDINAL REINFORCEMENT TO SUIT GEOMETRY AND ANCHORAGE OF STRANDS AND PRESTRESSING STRANDS NOT SHOWN.

BAR SPACING IS GIVEN ALONG 
OF PLANK

BAR MARK 'L' SHALL BE REPLACED WITH 'A' FOR 7m TO 8m SPAN PSC PLANK LENGTHS.

THE NUMBER OF BUNDLES 'X' IS DEPENDANT ON THE PSC PLANK LENGTH.

GENERAL NOTES

DIMENSIONS SHOWN ON BAR SHAPES DIAGRAM ARE MEASURED FROM THE OUTSIDE FACES OF THE BARS AND ARE IN MILLIMETERS. THE TRANSVERSE DIMENSIONS SHOWN FOR "X" BARS ARE NORMAL TO THE PLANK.

BAR SIZE IS THE NOMINAL DIAMETER IN MILLIMETERS.

BARS SHALL BE GRADE D500N TO AS/NZS 4671.

THE INCLUDED ANGLE OF ANY BEND SHALL BE A RIGHT ANGLE. ALL BENDS SHALL BE FITMENT BENDS IN ACCORDANCE WITH AS 5100.5.

THE TRANSVERSE DIMENSIONS SHOWN FOR "X" BARS ARE NORMAL FROM THE OUTSIDE FACES OF THE BARS AND ARE IN MILLIMETERS. DIMENSIONS SHOWN ON BAR SHAPES DIAGRAM ARE MEASURED FROM THE CENTERLINE OF THE BARS.

5 DEEP RECESS FOR ELASTOMERIC BEARING PAD. SIZE OF RECESS TO SUIT BEARING TYPE USED.

PLAN

CONCRETE

TRIM FIRST 'X' BAR TO ACHIEVE NOMINAL COVER.

PLAN

REINFORCEMENT

LONGITUDINAL REINFORCEMENT TO SUIT GEOMETRY AND ANCHORAGE OF STRANDS AND PRESTRESSING STRANDS NOT SHOWN.

BAR SPACING IS GIVEN ALONG 
OF PLANK

BAR MARK 'L' SHALL BE REPLACED WITH 'A' FOR 7m TO 8m SPAN PSC PLANK LENGTHS.

THE NUMBER OF BUNDLES 'X' IS DEPENDANT ON THE PSC PLANK LENGTH.

GENERAL NOTES

DIMENSIONS SHOWN ON BAR SHAPES DIAGRAM ARE MEASURED FROM THE OUTSIDE FACES OF THE BARS AND ARE IN MILLIMETERS. THE TRANSVERSE DIMENSIONS SHOWN FOR "X" BARS ARE NORMAL TO THE PLANK.

BAR SIZE IS THE NOMINAL DIAMETER IN MILLIMETERS.

BARS SHALL BE GRADE D500N TO AS/NZS 4671.

THE INCLUDED ANGLE OF ANY BEND SHALL BE A RIGHT ANGLE. ALL BENDS SHALL BE FITMENT BENDS IN ACCORDANCE WITH AS 5100.5.

THE TRANSVERSE DIMENSIONS SHOWN FOR "X" BARS ARE NORMAL FROM THE OUTSIDE FACES OF THE BARS AND ARE IN MILLIMETERS. DIMENSIONS SHOWN ON BAR SHAPES DIAGRAM ARE MEASURED FROM THE CENTERLINE OF THE BARS.

5 DEEP RECESS FOR ELASTOMERIC BEARING PAD. SIZE OF RECESS TO SUIT BEARING TYPE USED.
DESKTOP ASSUMPTIONS

GENERAL NOTES

CONCRETE EXPOSURE CLASSIFICATION: B1.
MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE IN THE DECK: 40MPa.
REINFORCEMENT GRADE DESIGNATED AS N16-40T.
THE REQUIRED COVER SPECIFIED IS BASED ON WET CURING IN ACCORDANCE WITH AS 5100.5.
MAXIMUM SKEW ANGLE: 45°.
THE REQUIRED COVER SPECIFIED IS BASED ON WET CURING IN ACCORDANCE WITH AS 5100.5.
MAXIMUM GAP BETWEEN ADJACENT PLANKS: 320mm.
MAXIMUM SKEW ANGLE: 45°.
THE REQUIRED COVER SPECIFIED IS BASED ON WET CURING IN ACCORDANCE WITH AS 5100.5.
MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE IN THE DECK: 40MPa.
CONCRETE EXPOSURE CLASSIFICATION: B1.

MINIMUM AGE OF THREE DAYS AND ACHIEVED A COMPRESSIVE STRENGTH OF 32MPa.
CONCRETE IN THE LINK SLAB SHALL BE PLACED AFTER MIDSPAN CONCRETE HAS REACHED
EDGING TOOLS MUST NOT BE USED AT DECK CONSTRUCTION JOINTS.
IN THE HOG OF PLANKS AND THE VERTICAL ALIGNMENT.
DECK THICKNESS SHALL BE INCREASED WHERE REQUIRED TO ALLOW FOR VARIATION
OF BEARING

FIBRE CEMENT SHEET SHALL BE PLACED TO ENSURE A MINIMUM
OF 30 AND A MAXIMUM OF 40
SEATING ON PLANKS

REINFORCEMENT PROJECTING
FROM PLANK - TYP

OF PIER

DEBONDED ZONE

NOMINAL 10 THICK BITUMEN
IMPREGNATED FIBRE BOARD

45 COVER

45 COVER

DEBONDED ZONE

N16-V-150

CENTURY MORTAR PAD - TYP

Deck concrete and reinforcement not shown

DESIGN ASSUMPTIONS

CONCRETE EXPOSURE CLASSIFICATION: B1.
MINIMUM 28 DAY COMPRESSIVE STRENGTH OF CONCRETE IN THE DECK: 40MPa.
REINFORCEMENT GRADE DESIGNATED AS N16-40T.
THE REQUIRED COVER SPECIFIED IS BASED ON WET CURING IN ACCORDANCE WITH AS 5100.5.
MAXIMUM SKEW ANGLE: 45°.
MAXIMUM GAP BETWEEN ADJACENT PLANKS: 320mm.
TWO WAY CROSS FALL.

GENERAL NOTES

SCALE

1:30

1:60

1:120

1:240

OR AS SHOWN

THE MINIMUM THICKNESS OF LINK SLABS, INCLUDING BITUMEN IMPREGNATED
FIBRE BOARD, SHALL BE 200mm.
DECK THICKNESS SHALL BE INCREASED WHERE REQUIRED TO ALLOW FOR VARIATION
IN THE HOG OF PLANKS AND THE VERTICAL ALIGNMENT.
EDGING TOOLS MUST NOT BE USED AT DECK CONSTRUCTION JOINTS.
CONCRETE IN THE LINK SLAB SHALL BE PLACED AFTER MIDSPAN CONCRETE HAS REACHED
A MINIMUM AGE OF THREE DAYS AND ACHIEVED A COMPRESSIVE STRENGTH OF 32MPa.