1. **Check dams** may be constructed of a variety of materials (e.g. straw bales, sediment fence, rock & geotextile, sheet piling, etc.).

2. Check dams to be trenched 200 mm into ground surface on bank and sides and securely backfilled.

3. Spillway to be over invert of drain with discharge not permitted to flow around ends.

4. Spillway to be less than 1 metre above invert of drain.

5. Some form of dissipation may be required below spillways of check dams (e.g. rock, sand bags).

6. Check dams to be spaced so the toe of the upstream check is level with the spillway of the next downstream check (refer to diagram above).

7. Check dams to be inspected after storm events and repaired as required.

Notes

CROSS SECTION OF AGGREGATE CHECK DAM

- Spillway 100 mm
- Aggregate (e.g. may be wrapped in geotextile for extra strength)
- Aggregate check dam
- Cross section of aggregate check dam
- Natural surface

CROSS SECTION OF SEDIMENT FENCE CHECK DAM

- Spillway created by:
 1. Securing horizontal stake to vertical stakes at a height of 1 to 2 times the height of the sediment fence.
 2. Cutting the sediment fence and securing over the horizontal stake to create a window.
- Natural surface
- Dissipation below spillway (e.g. rock)
- End of structure higher than spillway
- Sediment fence entrenched 200 mm into ground
- Spillway over top of bale
- Natural surface
- Cross section of sediment fence check dam

CROSS SECTION OF STRAW BALE CHECK DAM

- Spillway higher than structure
- Natural surface
- Dissipation below spillway (e.g. rock)
- End of structure higher than spillway
- Straw bales staked with 2 stakes per bale
- Straw bales entrenched 200 mm into ground
- Spillway over top of bale
- Natural surface
- Cross section of straw bale check dam

- End of structure higher than spillway
- Natural surface
- Dissipation below spillway (e.g. rock)
- Cross section of straw bale check dam

Area of sediment deposition

- Direction of flow
- Series of check dams
- Series of check dams
- Trapped sediment

SERIES OF CHECK DAMS

- Direction of flow
- Natural surface
- Natural surface
- 150 mm
- Rock entrenched 200 mm into ground
- Natural surface

AGGREGATE CHECK DAM

- Aggregate (e.g. may be wrapped in geotextile for extra strength)
- Cross section of aggregate check dam
- Natural surface
- Natural surface
- 150 mm
- Rock entrenched 200 mm into ground

CROSS SECTION OF AGGREGATE CHECK DAM

- Spillway 100 mm
- Aggregate (e.g. may be wrapped in geotextile for extra strength)
- Aggregate check dam
- Cross section of aggregate check dam
- Natural surface

CROSS SECTION OF SEDIMENT FENCE CHECK DAM

- Spillway created by:
 1. Securing horizontal stake to vertical stakes at a height of 1 to 2 times the height of the sediment fence.
 2. Cutting the sediment fence and securing over the horizontal stake to create a window.
- Natural surface
- Dissipation below spillway (e.g. rock)
- End of structure higher than spillway
- Sediment fence entrenched 200 mm into ground
- Spillway over top of bale
- Natural surface
- Cross section of sediment fence check dam

CROSS SECTION OF STRAW BALE CHECK DAM

- Spillway higher than structure
- Natural surface
- Dissipation below spillway (e.g. rock)
- End of structure higher than spillway
- Straw bales staked with 2 stakes per bale
- Straw bales entrenched 200 mm into ground
- Spillway over top of bale
- Natural surface
- Cross section of straw bale check dam

- End of structure higher than spillway
- Natural surface
- Dissipation below spillway (e.g. rock)
- Cross section of straw bale check dam

Notes

- Check dams may be constructed of a variety of materials (e.g. straw bales, sediment fence, rock & geotextile, sheet piling, etc.).
- Check dams to be trenched 200 mm into ground surface on bank and sides and securely backfilled.
- Spillway to be over invert of drain with discharge not permitted to flow around ends.
- Spillway to be less than 1 metre above invert of drain.
- Some form of dissipation may be required below spillways of check dams (e.g. rock, sand bags).
- Check dams to be spaced so the toe of the upstream check is level with the spillway of the next downstream check (refer to diagram above).
- Check dams to be inspected after storm events and repaired as required.