Appendix I

Preliminary arboricultural advice report
Preliminary Arboricultural Advice
In Relation to Two Hills Figs
At
Southern Toll Plaza
Sydney Harbour Bridge
Sydney

Prepared for:

Roads and Maritime Services NSW
C/o Parsons Brinkerhoff Australia Pty Ltd
GPO Box 5394
SYDNEY NSW 2001

Ref. 2202PA
August 2012
DISCLAIMER

This Document has been prepared for the exclusive use of the Client and Tree Wise Men® Australia Pty Ltd (TWM) accepts no responsibility for its use by other persons.

The Client acknowledges that this Document, and any opinions, advice or recommendations expressed or given in it, are based on the information supplied by the Client and on the data, inspections, measurements and analysis carried out or obtained by Tree Wise Men® Australia Pty Ltd (TWM) and referred to in the Document. No guarantee is implied with respect to future tree safety. The Client should rely on the Document and on its contents, only to that extent.

Peter Castor
Director
BSc (For.)
Member: IACA, PIA, UDIA, AA, LGTRA, MAE (UK)
14 August 2012
TABLE OF CONTENTS

1. **EXECUTIVE SUMMARY** ... 4

2. **BACKGROUND** ... 5
 2.1 Introduction ... 5
 2.2 The Subject Site ... 5
 2.3 The Subject Trees ... 5

3. **METHODOLOGY** ... 7
 3.1 Data Collection ... 7
 3.2 Identification of Subject Trees .. 7
 3.3 Documents and Plans Referenced 7
 3.4 Australian Standard AS4970-2009 .. 7

4. **IMPACT OF PROPOSED WORKS** 9
 4.1 Summary ... 9
 4.2 Tree Protection Measures .. 9
 4.3 Utilities Drawings .. 11
 4.4 Civil Drawings .. 11
 4.5 Other Tree Removal .. 11

ATTACHMENTS

A. Definitions of Terms

B. Photos

C. Arboricultural Implications Plan
1. EXECUTIVE SUMMARY

Based on the supplied concept kerb realignment aerial photo mark-up, both Hills Figs, *Ficus microcarpa var. Hillii* located adjacent to the proposed kerb realignment works at the Southern Toll Plaza of the Sydney Harbour Bridge can be retained.

Tree Protection Zones (TPZ) for the trees are indicated as circles on the Arboricultural Implications Plan (Attachment C). Assuming tree roots are confined by the existing kerb and gutter (i.e. non-circular root arrangement), the TPZ encroachments of the proposed kerb realignment works are approximately 7% for Tree 1 and 13% for Tree 2.

Given the tolerance of this species of construction activity, these levels of encroachment should not lead to reduced vigour or condition enabling both trees to be retained.

There is ample open ground beyond the TPZs available for post-construction root growth to compensate for expected root loss.

Further arboricultural assessment will be required once more advanced construction drawings are made available.
2. **BACKGROUND**

2.1 **INTRODUCTION**

2.1.1 Tree Wise Men® Australia Pty Ltd was commissioned by Parsons Brinkerhoff Australia Pty Ltd (PB) for the Roads and Maritime Services (formerly the Roads and Traffic Authority) to prepare a Preliminary Arboricultural Advice for realignment of the existing kerb lines at the Southern Toll Plaza of the Sydney Harbour Bridge (the subject site). A Preliminary Assessment only was possible at this stage given the schematic form of the proposal.

2.1.2 An assessment was sought on the likely impact of proposed civil works associated with the kerb realignment on two Hills Figs, *Ficus microcarpa var. Hillii* (the subject trees) as indicated on the Arboricultural Implications Plan (Attachment B).

2.2 **THE SUBJECT SITE**

2.2.1 The subject site is that portion of Southern Toll Plaza of the Sydney Harbour Bridge in the vicinity of the two Hills Figs near the intersection of York Street and Grosvenor Street Sydney (Photo A) as indicated on the Arboricultural Implications Plan (Attachment C).

2.2.2 The soil profile characteristic within the Tree Protection Zone (TPZ) of the two trees is unknown at this stage, but is likely to be completely man-made both within the nature strip and beneath the carriageway. The extensive surface roots observed within the TPZ suggests relatively compacted soils. The ground on which the trees were growing had a slight fall to the west. There were numerous existing utilities located within the TPZ of both trees.

2.2.3 There was a flyover ramp adjacent to the western edge of the crown of both trees (Photo B).

2.3 **THE SUBJECT TREES**

2.3.1 The two trees were growing within an irregular shaped parcel of road reserve as indicated on the attached Arboricultural Implications Plan. Both trees are protected under the City of Sydney Tree Preservation Order ¹.

2.3.2 Given the vigour, condition, size and prominence in the landscape both trees were rated as ©Retention Value A². Both trees contained bark inclusions³ in the main stem junctions at 0.5 metre above grade. No crown pruning is required at this stage, but reduction pruning may be required in the future to reduce the risk of stem failure.

² Refer to Attachment A for explanation of ©Retention Index.
³ Bark inclusions are where bark rolls into the branch or stem junction limiting the structural strength of the union. Bark inclusions are common in Hills Figs but need to be monitored as the trees age.
2.3.3 The general findings and data collected for the two subject trees are contained in Table 1 below.

Table 1: Characteristics of Subject Trees

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Tree 1</th>
<th>Tree 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name, Botanical Name</td>
<td>Hills Weeping Fig, Ficus microcarpa var 'Hilli'</td>
<td>Hills Weeping Fig, Ficus microcarpa var 'Hilli'</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Canopy Spread Radius (mm)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>DBH (m) (@ 0.3 above grade)</td>
<td>950</td>
<td>845</td>
</tr>
<tr>
<td>Spot RL (m)</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>SRZ (m)</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>TPZ (m)</td>
<td>11.4</td>
<td>10.2</td>
</tr>
<tr>
<td>Vigour</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Condition</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Age Class</td>
<td>SM (approx. age 20 yrs)</td>
<td>SM (approx. age 20 yrs)</td>
</tr>
<tr>
<td>SULE</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>©Significance Rating</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>©Retention Value</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Comments</td>
<td>Bark inclusion at 0.5m a.g. Mower damage to surface roots. Existing offsets to face of kerb 4.3m east and 8.5m west. Crown overhang of carriageway to east and west.</td>
<td>Bark inclusion at 0.5m a.g. Mower damage to surface roots. Crown overhang of carriageway to east and west.</td>
</tr>
</tbody>
</table>

4 Attributes. See Definition of Terms (Attachment A).
3. METHODOLOGY

3.1 DATA COLLECTION

3.1.1 In preparation of this Preliminary Arboricultural Advice a ground level, visual tree assessment (VTA) was undertaken on 23rd July, 2012. No aerial (climbing) inspections, woody tissue testing or tree root mapping were undertaken as part of this assessment.

3.1.2 Tree heights were estimated. Trunk diameter at breast height (DBH) was measured at 0.3 metres above ground level and rounded to the nearest 0.1 metre. The trunk diameter was at its minimum at 0.3m a.g. with both trees bifurcating above. This trunk diameter was used to calculate both the TPZ and SRZ radii. Structural Root Zones (SRZ) and Tree Protection Zones (TPZ) were also rounded to the nearest 0.1 metre.

3.1.3 All tree offsets mentioned in this Document are to centre of trunk unless otherwise stated.

3.1.4 The VTA coincided with a meeting with a representative of the Roads and Maritime Services who provided verbal advice relating to the current proposal.

3.2 IDENTIFICATION OF SUBJECT TREES

3.2.1 The two trees are indicated on the attached Arboricultural Implications Plan (Attachment B). This plan has been adapted from that supplied by Parsons Brinkerhoff.

3.2.2 The trees were numbered and labelled (Tree 1 and Tree 2) on site to assist others working on the project.

3.3 DOCUMENTS AND PLANS REFERENCED

3.3.1 The following documents have been reviewed or referenced:

- Hand marked aerial photograph showing proposed kerb realignment (the proposed works), supplied under cover of email dated 13 July 2012.

3.4 AUSTRALIAN STANDARD AS4970-2009

3.4.1 The Australian Standard AS 4970–2009 Protection of trees on development sites has been used as a benchmark in the preparation of this report and the terminology and assessment methodology have been adopted from this document. This Preliminary Arboricultural Advice complies with 2.3.2 Preliminary tree assessment and 2.3.3 Preliminary arboricultural report of AS4970-2009.

3.4.2 Recommendations have been based on tree ©Retention Value, Vigour, Condition, SULE and construction offsets (refer to Attachment A). Trees with ©Retention Value “A” should be given greater priority for retention than trees with ©Retention Value “C”. Trees with Long (40 years +) SULE should be given greater priority for retention than trees with Short (5-15 years) SULE (refer to Attachment A).

3.4.3 Tree Protection Zone (TPZ) and Structural Root Zone (SRZ) are as per Section 3 of AS 4970-2009 and are defined at Attachment A of this report.

3.4.4 “Construction” for the purpose of this Preliminary Arboricultural Advice means excavation (greater than 100mm), compacted fill or machine trenching\(^6\). “Excavation” includes cut batters, boxing-out for the various pavement types, trenching for utilities and footings for retaining walls.

3.4.5 Trees within proposed construction footprints are recommended for removal (Rm).

3.4.6 Where construction is proposed within Structural Root Zone (SRZ) offsets, those trees have been similarly recommended for removal (Rm). Fully elevated, pier and beam type construction or hand dug services trenches (or horizontal boring) is however possible within a SRZ.

3.4.7 Generally trees with greater than 25% of the Tree Protection Zone (TPZ) impacted by construction are recommended for removal (Rm). There are however different types of construction incursions proposed (e.g. fill, cut, services, pavement type, retaining walls) with varying tree impacts likely. Existing constraints to root development also vary the TPZ. Compacted fill can be equally as damaging to tree longevity: root development is restricted within heavily compacted soils.

3.4.8 Trees to be retained with construction impacting less than 25% of the TPZ area were rated as Retain Plus (R+). Specific construction monitoring will be required for the Retain (R+) trees (refer to Recommendations).

3.4.9 TPZ encroachments of >10% are defined (3.3.3 of AS4970) as ‘major’. This does not mean that the tree will be fatally injured, but that the project arborist must demonstrate that the tree(s) would remain viable.

3.4.10 Where construction is proposed beyond the TPZ, those trees are rated as Retain (R) with no specific tree protection design or tree protection monitoring required.

\(^6\)“Construction” is equivalent to “works” as defined at 1.4.9 of AS4970-2009.
4. IMPACT OF PROPOSED WORKS

4.1 SUMMARY

4.1.1 The two trees can be retained adjacent to the proposed kerb realignment works so long as no significant works are additionally required to the existing utilities within the TPZ. The two trees are worthy of retention, with no significant defects identified.

4.1.2 Assuming the roots are confined by the existing kerb and gutter the encroachments into the TPZ resulting from the proposed kerb realignment will total approximately 7% for Tree 1 and approximately 13% for Tree 2.

4.1.3 Given the tolerance of the *Ficus* genus to construction activity and the opportunity for post development root growth beyond the TPZ, both trees should be capable of surviving the proposed works. No kerb realignment works are proposed within the SRZ offsets.

4.1.4 Further arboricultural assessment will be required once advance design drawings are made available. This further assessment will be contained in an Arboricultural Impact Assessment in line with 2.3.5 of AS4970-2009. Currently no excavation is required within the Structural Root Zone (SRZ) and the excavation within the TPZ is acceptable to allow for tree retention.

4.2 TREE PROTECTION MEASURES

4.2.1 Arborist Involvement: An Arborist (the Project Arborist) with minimum AQF Level 5 qualifications shall be engaged prior to the commencement of work on the site. The Arborist's tasks will be to monitor and report on the condition of the retained trees. The Project Arborist shall be present to supervise any excavation, trenching or tunnelling within the TPZ of any retained trees. The schedule of works for the development shall acknowledge the role of the Project Arborist and the need to protect the retained trees. Sufficient notice shall be given to the Arborist where his/her attendance is required. Should the proposed design change from that reviewed, additional arboricultural assessment will be required.

4.2.2 Tree Protection Fencing: The trees shall be protected by means of fencing prior to commencement of demolition of existing kerbs.

It should be constructed from 1.8 metre high chain link wire or welded mesh suspended by galvanised steel pipe or equivalent and enclose the TPZ or the equivalent area allowing for building alignments.

The location of the fence should be determined at a site meeting between the Civil Contractor and the Project Arborist to prevent the need to move the fencing during construction. The area enclosed shall be mulched (see 4.2.6) and irrigated (see 4.2.7) and kept free from all building materials, contaminants and other debris and shall not be used for storage of any building materials.

Appropriate Tree Protection signs are to be placed on the fencing.

4.2.3 Trunk Protection: If tree protection fencing cannot be installed, the trunks of the trees are to be battened as per Figure 4 of AS4970-2009 to avoid bark damage. Ground protection is to be installed to avoid root damage.
4.2.4 **Tree Pruning:** Minor crown lifting may be required to provide for machinery clearance for the works (Photo C). All tree pruning (including root pruning) shall be carried out by a qualified and experienced Arborist to Australian Standard AS4373-2007, *Pruning of Amenity Trees*. All surface roots required to be cut are to be cut by hand immediately inside the alignment of the new kerb alignment. Roots are to be covered with biodegradable matting to buffer drying and concrete contamination. All roots >50mm diameter to be cut are to be approved by the Project Arborist to allow for assessment of health and stability.

4.2.5 **Mulching:** Mulch to a depth of 100 millimetres using composted green waste mulch within TPZ. The mulch should be free of weed seeds and other contaminants. Should constant machinery access be required within the trees’ TPZs, but outside the protective fencing, heavier mulch or other ground protection boarding should be installed to prevent soil compaction and associated root damage.

4.2.6 **Temporary Irrigation:** Where construction-related activity or root cutting is proposed within the TPZ of retained trees, temporary irrigation or water cart access shall be provided to the remaining unimpacted TPZ areas so as to maintain adequate soil moisture levels during the construction period. Delivery volumes are to allow for mulch layer and rainfall volumes and frequency.

4.2.7 **Earthworks:** To prevent unnecessary root damage machinery should be moved within defined haul routes beyond TPZs wherever possible. The excavation shall be carried out under the supervision of the Project Arborist. All roots within TPZ of retained trees that need to be cut are to be hand cut prior to machine cutting. Immediately following excavation the face of the cut. Then the TPZ shall be draped and maintained moist until backfilled. This should be done using biodegradable matting pinned at ground level and allowed to cover the full depth of the rootzone excavation.

There is to be no soil battering or unnecessary over-excavation within TPZ offsets. Topsoil stripping should be restricted wherever possible within TPZ offsets by means of appropriate engineering solutions.

4.2.8 **Prevention of Soil Compaction:** During the construction period there may be considerable traffic movement associated with general building activities. The resultant soil compaction and possible contamination of the soil can have an equally detrimental impact on the tree as does the severing and exposing of the roots during excavation.

Specific access tracks for machinery should be determined through consultation between the Civil Contractor and the Project Arborist. Should heavy vehicle movement be required within a retained tree’s PRZ, a track should be formed at grade using large diameter (up to 100mm) recycled railway ballast (true basalt) over a geofabric or a corduroy of heavy timbers.

4.2.9 **Prevention of Soil Inversion:** Care shall be taken to avoid inversion of the soil layers on the site and particularly within TPZs, as clays placed over coarse textured soils will reduce water infiltration, creating a perched water table. Decline and/or death of underlying tree roots are expected due to moisture stress.
4.2.10 Services: Existing services within the TPZ (Photo D) may need to be relocated to allow for the proposed works. Further assessment of tree impacts may be required. Trenching for services is to be regarded as “construction”. Trenching within TPZ offsets should be avoided wherever possible. Directional (“trenchless”) boring or suspension of services should be used wherever possible. Where trenching is to occur within TPZ offsets, it is to be undertaken by hand to rock with no roots >50mm to be cut, under supervision of the Project Arborist.

4.3 UTILITIES DRAWINGS

4.3.1 Utilities drawings have not been reviewed. Services trenching where possible is to be routed outside TPZ offsets. Where this is not possible, horizontal boring or hand digging will be required where routing is within SRZ. Further tree impact assessment is required.

4.4 CIVIL DRAWINGS

4.4.1 The concept design assessed is that indicated on the supplied aerial photo mark-up which has been adapted for the Arboricultural Implications Plan (Attachment C). It shows realigned kerbs in the vicinity of the two subject trees.

4.4.2 Civil drawings have not been reviewed. Further tree impact assessment is required once advanced civil drawings are available.

4.5 OTHER TREE REMOVAL

4.5.1 Based on the supplied information neither of the two Hills Figs need to be removed.

4.5.2 There was a self-seeded Hackberry, *Celtis sinensis* immediately adjacent to the base of Tree 2 (south side (Photo C). This Hackberry should be removed to favour Tree 2. This tree removal should be undertaken in compliance with WorkCover NSW Code of practice for the Amenity Tree Industry, 1998. Care is to be taken not to damage the above and below ground sections of Tree 2. The stump should be ground down rather than being grubbed out.
Attachment A: Definition of Terms
COMMON NAME/GENUS SPECIES CULTIVAR - Common names can vary with selected texts. Where species is unknown, “sp” indicated after genus. Where cultivar is unknown “cv” indicated after species. The number in brackets e.g. (x9) after the species indicates the number of trees in this tree group.

DBH - Diameter at Breast Height. Tree trunk diameter measured at breast height (1.4 metres above ground level). Fabric diameter tape is used which assumes a circular cross section. Multiple measurements indicate multiple trunks. Where up to 3 trunks are present, the combined DBH is measured using the formula as per Appendix A of AS4970-2009. Where more than three trunks exist, DBH is indicated as the diameter @ grade. Where DBH measurement cannot be taken at 1.4m, the height at which it has been taken, is indicated.

CANOPY SPREAD RADIUS – Average canopy radius (widest + narrowest ÷ 2). Circular canopy depictions on Tree Plan/Survey are indicative only. Where canopy spread was significantly skewed, all four cardinal point measurements were recorded.

AGE CLASS - Immature (IM), Semi-mature (SM), Mature (M), Over-mature (OM). Assessment of the trees current Age. A Mature (M) tree has reached a near stable size (biomass) above and below ground. Trees can have a Mature age class for >90% of life span. Over-mature (OM) trees show symptoms of irreversible decline and decreasing biomass.

VIGOUR - Good (G), Fair (F) or Poor (P). The general appearance of the canopy/foliage of the tree at the time of inspection. Vigour can vary with the season and rainfall frequency. A tree can have Good vigour but be hazardous due to Poor condition. A tree in Good vigour has the ability to sustain its life processes. Vigour is synonymous with health.

CONDITION - Good (G), Fair (F) or Poor (P). The general form and structure of the trunk/s and branching. Trunk lean, trunk/branch structural defects, canopy skewness or other hazard features are considered.

SRZ RADIUS - Structural Root Zone. The area around a tree required for tree stability. Earthworks should be prohibited within the SRZ. The SRZ is calculated from the formula and graph at Figure 1 of AS4970-2009. The SRZ graph has been adapted from the work of Claus Mattheck (1994). DBH + 10% has been used for the calculation of SRZ. Where DBH is measured at grade of at a height other than 1.4m above grade, 10% has not been added.

TPZ RADIUS – Tree Protection Zone. Radial offset (m) of twelve times (12X) trunk DBH measured from centre of trunk (for trees less than 0.2 metre DBH minimum TPZ is 2.0 metres). To satisfactorily retain the tree construction activity (both soil cut and fill) must be restricted within this offset. TPZ offsets are rounded to the nearest 0.1 metre. Existing constraints to root spread can vary TPZ. Generally an area equivalent to the TPZ should be available to the tree post development. Encroachment occupying up to 10% of the TPZ area is acceptable without detailed rootzone assessment. Encroachments greater than 10% require specific arboricultural assessment.

SULE - Safe Useful Life Expectancy. A systematic pre-development tree assessment procedure developed by Jeremy Barrell, Hampshire, England. The SULE method used in this assessment has been adapted for simplified use within the field. It gives a length of time that the Arborist feels a particular tree can be retained with an acceptable level of risk based on the information available at the time of the inspection. SULE ratings are Long (retainable for 40 years or more with an acceptable level of risk), Medium (retainable for 16-39 years), Short (retainable for 5-15 years) and Removal (tree requiring immediate removal due to imminent hazard or absolute unsuitability).

©SIG. RATING - ©Significance Rating Scale (see notes over)

©RETENTION INDEX (see notes over)

RECOMMENDATIONS - Retain (R), Retain Plus (R+), Transplant (T) or Remove (Rm).

COMMENTS - Comments relating to the location, surroundings and hazard potential of the trees at the time of inspection and where applicable the reason for removal.
©SIG. RATING - ©Significance Rating Scale. A site specific qualitative evaluation of a tree relative to the existing landuse developed by Tree Wise Men® Australia Pty Ltd. Takes into consideration the impact of the tree on the surrounding landscape, streetscape and bushland. Rarity, habitat value, historical/cultural value and structural form of the tree are considered in this rating system. It is possible for a tree to have a Short SULE and a ©Significance Rating of 1. Likewise it is possible for a tree to be given a Long SULE and a ©Significance Rating of 4 (e.g. weed species). The ©Significance Ratings used in this Document are as outlined in Table 1.

Table 1: ©Significance Rating Characteristics

<table>
<thead>
<tr>
<th>Rating</th>
<th>Significance</th>
<th>Characteristics (some or all)</th>
</tr>
</thead>
</table>
| ©Sig. Rating 1 | Exceptional | • Major contribution to site amenity
• Remnant specimen
• Heritage Listed
• Listed on Significant Tree Register
• Threatened Species
• Good vigour and condition
• Cultural significance
• Possible habitat for threatened fauna
• Excellent, well formed specimen
• Rare or unusual species
• Large above ground biomass
• Unique within the site and surrounds |
| ©Sig. Rating 2 | High | • Considerable contribution to site amenity
• Remnant specimen
• Good vigour and condition
• Threatened Species
• Cultural significance
• Possible habitat tree for threatened fauna
• Well formed specimen
• Rare or unusual species
• Large or moderate above ground biomass
• Other specimens with similar characteristics within the site and surrounds |
| ©Sig. Rating 3 | Moderate | • Minor contribution to site amenity
• Remnant or planted
• Fair or Poor vigour and condition
• Potential for growth
• Well formed or asymmetrical form
• Other specimens with similar characteristics within the site and surrounds |
| ©Sig. Rating 4 | Low | • Small/poor specimen
• Poor vigour and condition
• Inappropriate for the location
• Minor contribution to landscape amenity
• Easily replaced
• Weed species or TPO Exempt
• Hazardous
• Previously ©Sig. Rating 5 tree |
©RETENTION INDEX. A site specific assessment of an individual tree’s retention value developed by Tree Wise Men® Australia Pty Ltd. Incorporating SULE and ©Significance Rating each tree is allocated a retention value of A, B, C or D. The ©Retention Index values can be described as follows:

<table>
<thead>
<tr>
<th>©Retention Value</th>
<th>Should be retained</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>©Retention Value A</td>
<td>Should be retained</td>
<td>Major redesign may be required (e.g. movement of building footprint, re-alignment of roadway).</td>
</tr>
<tr>
<td>©Retention Value B</td>
<td>Could be retained</td>
<td>Minor redesign may be required (e.g. level changes, pavement detail).</td>
</tr>
<tr>
<td>©Retention Value C</td>
<td>Could be retained</td>
<td>Should not constrain proposed development.</td>
</tr>
<tr>
<td>©Retention Value D</td>
<td>Remove or fence off (irrespective of development layout.)</td>
<td>Imminently dangerous.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In an irreversible state of decline.</td>
</tr>
</tbody>
</table>

©Retention Index

<table>
<thead>
<tr>
<th>©Retention Index</th>
<th>©Significance Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Long (40+ years)</td>
<td>A</td>
</tr>
<tr>
<td>Medium (15-40 years)</td>
<td>B</td>
</tr>
<tr>
<td>Short (5-15 years)</td>
<td>B</td>
</tr>
<tr>
<td>Remove (< 5 years)</td>
<td></td>
</tr>
</tbody>
</table>
Attachment B: Photos
Photo A: The two subject Hills Figs looking south (Tree 1 is the northern-most tree) near the intersection of York and Grosvenor Streets.

Photo B: The two Hills Figs looking north showing the ground conditions and proximity to flyover to west.
Photo C: Crown overhang of carriageway and eastern kerb edge (looking north-northwest).

Photo D: Looking southeast showing western kerb edge, existing services and crown overhang.
Attachment C: Arboricultural Implications Plan