The Roads and Traffic Authority (RTA) is seeking community feedback on nine options to rehabilitate or replace the Windsor Bridge across the Hawkesbury River. A community workshop will be held on Saturday 1 August 2009 from 10am to 3pm at the Parkes Civic Centre, Windsor. This $25 million project is fully funded by the NSW Government.

Your comments are invited

Written comments on the design of the project are welcome. Please address your comments to:

John Navamani, Senior Project Manager
Roads and Traffic Authority
PO Box 9729, RYDALL NSW 2112
Or email comments to:
John_Navamani@rta.nsw.gov.au

All comments are required by Friday 14 August 2009.

What has happened so far?

In June 2008 the NSW Government announced it had committed $25 million to replace Windsor Bridge. The announcement followed investigations by the Department of Environment, the Hawkesbury Local Government and the Roads and Traffic Authority into the condition of the existing bridge and the needs for rehabilitation or replacement.

This document outlines:

- nine options currently being considered to rehabilitate or replace the existing bridge
- where the community can view the options and contribute to their development
- what the next steps are for the project

Background

Windsor Bridge is the oldest existing crossing of the Hawkesbury River. The bridge was originally built with a timber deck on cast iron piers in 1875. Over the years the deck was replaced by a concrete one in 1920 and a footpath was added on the downstream side in 1968.

Windsor Bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

While the existing structure is still considered safe for general traffic, parts of the bridge are now 134 years old.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.

The bridge is 143 metres long and 6.1 metres wide. The timber deck, abutment and the same pier were replaced by reinforced concrete in 1920 and a concrete deck was added at this time.
A summary of the options to improve the Hawkesbury crossing at Windsor

Key considerations:
- Relocation of the Hawkesbury River within the boundary of Windsor Park and retaining the River Farm.
- The Hawkesbury River would be diverted into an artificial channel for three years during construction.
- The Hawkesbury River would be diverted into an artificial channel for three years during construction.
- The Hawkesbury River would be diverted into an artificial channel for three years during construction.
- The Hawkesbury River would be diverted into an artificial channel for three years during construction.

Option 2 – Low Level Bridge

- Option 1 would provide clearance of approximately 4.5 metres for vehicles.
- Option 2 would provide clearance of approximately 3.5 metres for vehicles.
- Option 1 would provide clearance of approximately 4.5 metres for vehicles.
- Option 2 would provide clearance of approximately 3.5 metres for vehicles.

- Along Macquarie Street through to Kable Street, crossing the southern and northern river banks and from Macquarie Park.
- Along Macquarie Street through to Kable Street, crossing the southern and northern river banks and from Macquarie Park.
- Along Macquarie Street through to Kable Street, crossing the southern and northern river banks and from Macquarie Park.
- Along Macquarie Street through to Kable Street, crossing the southern and northern river banks and from Macquarie Park.

- Key considerations:
 - Increased traffic along shopping precinct in Kable Street.
 - Potential impact to the heritage listed Masonic Centre.
 - Increased traffic along shopping precinct in Kable Street.
 - Potential impact to the heritage listed Masonic Centre.

- Potential impact to heritage items along the route.
- Potential access difficulties to properties along the route.
- Potential impact to heritage items along the route.
- Potential access difficulties to properties along the route.

Option 3

- Potential for queuing across Fitzroy Bridge along Windsor Road.
- Potential for queuing across Fitzroy Bridge along Windsor Road.
- Potential for queuing across Fitzroy Bridge along Windsor Road.
- Potential for queuing across Fitzroy Bridge along Windsor Road.

- Key considerations:
 - Increase in traffic noise to properties along the route.
 - Potential access difficulties to properties along the route.
 - Increase in traffic noise to properties along the route.
 - Potential access difficulties to properties along the route.

Option 4

- Key considerations:
 - Removal of raised pedestrian threshold at George Street and replacement with traffic lights to allow pedestrians to cross safely.
 - Removal of raised pedestrian threshold at George Street and replacement with traffic lights to allow pedestrians to cross safely.
 - Removal of raised pedestrian threshold at George Street and replacement with traffic lights to allow pedestrians to cross safely.
 - Removal of raised pedestrian threshold at George Street and replacement with traffic lights to allow pedestrians to cross safely.

Key – Location options Heritage properties/items

Location Options Considered

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Potential for the Bridge Street road cutting to be backfilled and landscaped to reinstate the shape of Thompson Square.
- Potential for the Bridge Street road cutting to be backfilled and landscaped to reinstate the shape of Thompson Square.
- Potential for the Bridge Street road cutting to be backfilled and landscaped to reinstate the shape of Thompson Square.
- Potential for the Bridge Street road cutting to be backfilled and landscaped to reinstate the shape of Thompson Square.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- As Baker Street is narrow, existing parking would need to be restricted/denied between Macquarie Street and George Street.
- As Baker Street is narrow, existing parking would need to be restricted/denied between Macquarie Street and George Street.
- As Baker Street is narrow, existing parking would need to be restricted/denied between Macquarie Street and George Street.
- As Baker Street is narrow, existing parking would need to be restricted/denied between Macquarie Street and George Street.

- Tree loss would be required along both river banks.
- Potential risk to the new bridge if constructed downstream of the existing bridge.
- Tree loss would be required along both river banks.
- Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Potential risk to the new bridge if constructed downstream of the existing bridge.
- Potential risk to the new bridge if constructed downstream of the existing bridge.
- Potential risk to the new bridge if constructed downstream of the existing bridge.
- Potential risk to the new bridge if constructed downstream of the existing bridge.

- Tree loss would be required along both river banks.
- Potential risk to the new bridge if constructed downstream of the existing bridge.
- Tree loss would be required along both river banks.
- Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.

- Key considerations:
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.
 - Tree loss would be required along both river banks.
 - Potential risk to the new bridge if constructed downstream of the existing bridge.